Asynchronous and Fault-Tolerant
Recursive Datalog Evaluation in
Shared-Nothing Engines

Modern Analytics Requires Iteration

Graph applications

— Graph reachability

— Connected components
— Shortest Path
Machine learning

— Clustering algorithms

— Logistic regression
Scientific analytics

— N-body simulation

Galaxy Evolution: An Iterative Example

A Simulation of the Universe

Picture from D. H. Stalder et. al. arXiv:1208.3444 [astro-ph.CO]

Present day Millions of years ago Big Bang
| >

Galaxy Evolution: Iterative Lineage Tracing

Jingjing Wang - University of Washington

Galaxy Evolution: Why It Is not Easy

Large-scale data sizes
— Scalability

lterative is the core

— Support efficient iterative constructs
Users are data scientists

— Provide an easy-to-use query interface

Shared datasets and resources

— Within a data management system

Iterative Analytics: Where to Do

SQL Server

— Single-node, cannot handle huge scale
MapReduce

— Rigid programming model

— Write to disk, expensive iteration
In-memory systems such as Spark

— Synchronous operations

Graph engines such as Graphlab
— Think like a vertex

No Existing System Meets
All Requirements

Synchronous iterations only

— AsterixDB, HalLoop, Pregel, REX, Spark, Prlter, Glog, ...
Single-node

— LogicBlox, DatalogkFs, ...

No declarative language
— Stratosphere, Naiad, Grace, Graphlab, ...

Specialized for graphs
— Graphlab, Grace, ...

Not a data management system
— Socialite, ...

Theory on recursive queries
— DatalogkFs, ...

Outline and Contributions

* Full-stack solution for iterative processing

— Declarative relational query language
* A subset of Datalog-with-Aggregation

— Scalable and easily implementable
* Small extensions to existing shared-nothing systems

— Efficient iterative computation
* Execution models and optimizations
* Implementation and empirical evaluation using (? Myria

Outline and Contributions

* Full-stack solution for iterative processing

— Declarative relational query language
* A subset of Datalog-with-Aggregation

— Scalable and easily implementable
* Small extensions to existing shared-nothing systems

— Efficient iterative computation
* Execution models and optimizations
* Implementation and empirical evaluation using @Myria

Jingjing Wang - University of Washington 9

From Datalog Programs to
Asynchronous Query Plans

Datalog: a relational query language
— Nicely expresses recursions

CC(x,x ges(x,) DECLARE @id AS INT, @Ivl AS INT
¢ TWGCSFD’@(@IBCE P@f c@LOrs streid=3
CC(y,v SET @Ivl =2
;WITH cte (id, parent, child, Ivl) AS
— IDBController (

. . SELECT id, parent, chjld, O
« Maintains state of “nonconstant” relations

WHERE id =1

— TerminationController unionaw
SELECT E.id, E.parent, E.child, M.Ivl+1

— Easy extensions to an exiSghg e e

WHERE Ivl < @Ivl
* Automatic compilation)

SELECT *
FROM CTE --where lvl=@Ivl
--OPTION (MAXRECURSION 10)

Outline and Contributions

* Full-stack solution for iterative processing

— Declarative relational query language
* A subset of Datalog-with-Aggregation

— Scalable and easily implementable
* Small extensions to existing shared-nothing systems

— Efficient iterative computation
* Execution models and optimizations
* Implementation and empirical evaluation using @Myria

Jingjing Wang - University of Washington 11

Iterative Computation:
How Can We Do Better

 Performance impact: # of intermediate tuples

— More tuples, more work, more resources

 Optimization: recursive execution models

— Synchronous vs. asynchronous

* Optimization: prioritizing tuples

— For asynchronous model, favor new tuples vs. base tuples

Optimization:
Recursive Execution Models

* Synchronous
— Stop at the end of each iteration
* Asynchronous
— No barrier, propagate updates when ready

* Galaxy Evolution

— Synchronous
* Find all galaxies at timestep 1, then 2, ...

— Asynchronous
e Galaxy A is a part of the evolution history
* A shares particles with galaxy B

Galaxy Evolution:
Execution Model Does Not Matter Much

600 |

500

H
o
o

¥ Sync

W Async

Time (seconds)
w
(@)
o

N
o
o

100

8 16 32 64
workers

80GB, 27 snapshots

16 machines

Jingjing Wang - University of Washington 14

Another Application:
Least Common Ancestor

Jingjing Wang - University of Washington

15

LCA: Asynchronous Can Be Much
Slower Than Synchronous

160 T

140

120

[EY
o
o

¥ Sync

Time (seconds)
00
o

60 \I& = ¥ Async
40 i —
20 \
0 I T 1
8 16 32 64

workers
2 million papers
8 million citations

Jingjing Wang - University of Washington

16

Optimization: Prioritizing Tuples

* For asynchronous processing
— Choice: favor new tuples vs. base tuples

 Example: connected components

Jingjing Wang - University of Washington

17

Connected Components:
Pull Order Impacts Run Time

2000 T
“» 1500
e
c
o
9
8 1
~ 1000
w -
£ T ‘
= T
500 L .
_\
O T T 1
8 16 32 64
workers

21 million vertices
776 million edges

Jingjing Wang - University of Washington

¥ Sync
m Async, new tuples first

Async, base tuples first

18

Conclusion

* Full-stack solution for iterative big-data analytics
— A declarative language
— Small extensions to existing shared-nothing engines
— Efficient iterative execution
— Failure handling methods
— More details in the paper

* Empirical evaluation of various models
— No single method outperforms others
— Future work: an adaptive cost-based optimizer

