Asynchronous and Fault-Tolerant
Recursive Datalog Evaluation in
Shared-Nothing Engines



Modern Analytics Requires Iteration

Graph applications

— Graph reachability

— Connected components
— Shortest Path
Machine learning

— Clustering algorithms

— Logistic regression
Scientific analytics

— N-body simulation



Galaxy Evolution: An Iterative Example

A Simulation of the Universe

Picture from D. H. Stalder et. al. arXiv:1208.3444 [astro-ph.CO]
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Galaxy Evolution: Iterative Lineage Tracing
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Galaxy Evolution: Why It Is not Easy

Large-scale data sizes
— Scalability

lterative is the core

— Support efficient iterative constructs
Users are data scientists

— Provide an easy-to-use query interface

Shared datasets and resources

— Within a data management system



Iterative Analytics: Where to Do

SQL Server

— Single-node, cannot handle huge scale
MapReduce

— Rigid programming model

— Write to disk, expensive iteration
In-memory systems such as Spark

— Synchronous operations

Graph engines such as Graphlab
— Think like a vertex



No Existing System Meets
All Requirements

Synchronous iterations only

— AsterixDB, HalLoop, Pregel, REX, Spark, Prlter, Glog, ...
Single-node

— LogicBlox, DatalogkFs, ...

No declarative language
— Stratosphere, Naiad, Grace, Graphlab, ...

Specialized for graphs
— Graphlab, Grace, ...

Not a data management system
— Socialite, ...

Theory on recursive queries
— DatalogkFs, ...



Outline and Contributions

* Full-stack solution for iterative processing

— Declarative relational query language
* A subset of Datalog-with-Aggregation

— Scalable and easily implementable
* Small extensions to existing shared-nothing systems

— Efficient iterative computation
* Execution models and optimizations
* Implementation and empirical evaluation using (? Myria
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From Datalog Programs to
Asynchronous Query Plans

Datalog: a relational query language
— Nicely expresses recursions

CC(x,x ges(x, ) DECLARE @id AS INT, @Ivl AS INT
¢ TWGCSFD’@(@IBCE P@f c@LOrs streid=3
CC(y,v SET @Ivl =2
;WITH cte (id, parent, child, Ivl) AS
— IDBController (

. . SELECT id, parent, chjld, O
« Maintains state of “nonconstant” relations

WHERE id =1

— TerminationController  unionaw
SELECT E.id, E.parent, E.child, M.Ivl+1

— Easy extensions to an exiSghg e e

WHERE Ivl < @Ivl
* Automatic compilation )

SELECT *
FROM CTE --where lvl=@Ivl
--OPTION (MAXRECURSION 10)
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Iterative Computation:
How Can We Do Better

 Performance impact: # of intermediate tuples

— More tuples, more work, more resources

 Optimization: recursive execution models

— Synchronous vs. asynchronous

* Optimization: prioritizing tuples

— For asynchronous model, favor new tuples vs. base tuples



Optimization:
Recursive Execution Models

* Synchronous
— Stop at the end of each iteration
* Asynchronous
— No barrier, propagate updates when ready

* Galaxy Evolution

— Synchronous
* Find all galaxies at timestep 1, then 2, ...

— Asynchronous
e Galaxy A is a part of the evolution history
* A shares particles with galaxy B



Galaxy Evolution:
Execution Model Does Not Matter Much
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Another Application:
Least Common Ancestor
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LCA: Asynchronous Can Be Much
Slower Than Synchronous
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Optimization: Prioritizing Tuples

* For asynchronous processing
— Choice: favor new tuples vs. base tuples

 Example: connected components

Jingjing Wang - University of Washington
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Connected Components:
Pull Order Impacts Run Time
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Conclusion

* Full-stack solution for iterative big-data analytics
— A declarative language
— Small extensions to existing shared-nothing engines
— Efficient iterative execution
— Failure handling methods
— More details in the paper

* Empirical evaluation of various models
— No single method outperforms others
— Future work: an adaptive cost-based optimizer



