LightDB
A Database System for Virtual, Augmented, & Mixed Reality Video Applications
Brandon Haynes, Amrita Mazumdar, Armin Alaghi, Magdalena Balazinska, Luis Ceze, & Alvin Cheung

Spherical Panoramic Images

Spherical Panoramic (360°) Videos

Light Fields
What happens here?

Key Features:
• Data management system for VR/AR/MR video applications
• Unified data model for panoramic (360°) and light field video
• Declarative queries with automatic optimization
• Full stack: data ingest, processing, and real-time streaming

Key Results:
• Decreased development complexity (~ 1/10 LOC)
• Increased performance (up to 4x for real-world workloads)
• Reduced client bandwidth & power requirements

Today:
1. LightDB Data Model
2. Physical & Logical Algebra
3. Architecture & Optimizer
4. Application: Predictive 360° Streaming
The Light Field Data Model

Light field data model
\[F(x, y, z, t, \theta, \phi) \]

Panoramic Image

\[F(0, 0, 0, 0, \theta', \phi') = \text{green} \]

360° Videos

\[F(0, 0, 0, t, \theta', \phi') = \text{orange} \]

Light Field Data Model
\[F(x, y, z, t, \theta, \phi) \]

\[F(0, 0, 0, 0, \theta, \phi) = \text{red} \]

Spherical Images

\[\text{Angle (\theta, \phi)} \]

360° Videos

\[\text{Angle (\theta, \phi), Time (t)} \]

Light Fields

\[\text{Angle (\theta, \phi), Time (t), Position (x, y, z)} \]
Light field data model

\[F(x, y, z, t, \theta, \phi) \]

Light Fields

\[F(0, 0, 0, t, \theta, \phi) = \text{red} \]
\[F(0, 0, 0, t, \theta, \phi) = \text{green} \]
\[F(0, 0, 0, t, \theta, \phi) = \text{orange} \]

LightDB Model

User \rightarrow \text{Query} \rightarrow \text{Query}

Light Fields

\[F(x, y, z, t, \theta, \phi) \]

2D Videos, Geometric Models, ...

LightDB Algebra

\text{PARTITION}(\Delta y)

\text{SELECT}\left[\left\{ x_1, y_1, z_1, t_1, \theta_1, \phi_1 \right\}, \left\{ x_2, y_2, z_2, t_2, \theta_2, \phi_2 \right\}\right]

\text{MAP}\left(\theta, \phi \rightarrow \left(\frac{\theta}{2}, \frac{\phi}{2}\right)\right)

LightDB Query Language

\text{Decode}(\text{INPUT}.\text{MP}4) \gg \text{Union}(\text{Scan}(\text{watermark})) \gg \text{Map}(\text{GRAYSCALE}) \gg \text{Encode}(\text{HEVC}) ;

的实际C++语句！

Logical Plan

Copyright

Actual C++ statement!
Watermark Query Performance

<table>
<thead>
<tr>
<th>FPS</th>
<th>LightDB</th>
<th>FFmpeg</th>
<th>OpenCV</th>
<th>SciDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LightDB Architecture

Gaussian Blur FPS

<table>
<thead>
<tr>
<th>FPS</th>
<th>LightDB</th>
<th>FFmpeg</th>
<th>OpenCV</th>
<th>SciDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GPU-Based Map Operator @ 4K

<table>
<thead>
<tr>
<th>FPS</th>
<th>LightDB</th>
<th>FFmpeg</th>
<th>OpenCV</th>
<th>SciDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Homomorphic Tile Union Operator @ 4K

Preconditions:
- HEVC Codec with Tiles
- Non-Overlapping Union
- Temporal Alignment

LightDB Application: Predictive Panoramic Tiling

Adaptive Streaming (HLS, DASH, ...)

Predicted Orientation Bitrate = 2000 kbps
Predicted Orientation Bitrate = 2000 kbps
Adjacent Tile Bitrate = 500 kbps

No one looks at the ground!
Bitrate = 50 kbps
Adjacent Tile Bitrate = 500 kbps

Current VR Video Applications

LightDB Queries

Decode(rtp://…)
>> Partition(Time, 1)
>> Partition(Theta, 90°)
>> Partition(Phi, 45°)
>> Transcode(𝑓)
>> Store(output);

Logical Plan

Physical Plan
Key Features:
- Data management system for VR/AR/MR video applications
- Unified data model for panoramic (360°) and light field video
- Declarative queries with automatic optimization
- Full stack: data ingest, processing, and real-time streaming

Key Results:
- Decreased development complexity (~ 1/10 LOC)
- Increased performance (up to 4x for real-world workloads)
- Reduced client bandwidth & power requirements