Deluceva: Delta-Based Neural Network Inference for Fast Video Analytics

Jingjing Wang and Magdalena Balazinska
University of Washington
Deluceva: Delta-Based Neural Network Inference for Fast Video Analytics

• Large volume of images/videos with valuable information
• A large set of neural network models for images
 • Object classification, detection, ...
• Next step: video analytics
 • Larger volume
 • Efficiency critical, live output
Video Analytics Using Neural Networks

Deep Neural Network
Rich set of established image models
Key Observation:
Temporal Redundancy
Process Deltas Instead of Full Frames

"Incremental Query Evaluation"
Process Deltas Instead of Full Frames

Data Stream

... pixel\([x,y,z]\) has changed by \(0,0,1\)...

“Incremental Query Evaluation”

new boat discovered with bounding box \(B\)...

State
Delta-Based Inference for Videos

• Problem:
 • Input: a video stream, a reference model
 • Output: similar to the reference model’s result

• Approach:
 • Accelerate model inference by performing less computation
Delta-Based Inference for Videos: Overview

- Modify neural network to take deltas as inputs
- Decide which deltas are significant enough to process
- Generate a network of mixed-type (dense or delta-based) operators
Delta-Based Inference for Videos: Overview

• Modify neural network to take deltas as inputs
• Decide which deltas are significant enough to process
• Generate a network of mixed-type (dense or delta-based) operators
Neural Network with Sparse Deltas

Frame 2 -> Model (original) = Model (original) + Model (delta) + Model (delta) = Model (original) + Frame 2 – Frame 1
Example Neural Network Model

• Example operators: convolution, max pooling, ReLU, ...

Model (original)
Example Neural Network Model

Model (delta)

Delta Operator Unit

- Modify operators to operate on deltas
Delta Operator Unit

How much to filter for the current frame?

• Sparse operator: takes sparse deltas & outputs delta
 • Saves # of FLOPs by processing delta scalars only

• Filter: send only significant deltas to the operator
 • Builds histogram, keeps small deltas & outputs large deltas
Delta-Based Inference for Videos

• Modify neural network to take deltas as inputs
• Decide which deltas are significant enough to process
• Generate a network of mixed-type (dense or delta-based) operators
Delta Impacts Output Quality

Ground truths:

Frame 1

Frame 2

Frame 2 – Frame 1

Conv

90%

Conv

20%

1s

5s
Dynamic Filtering Percentage

• Filtering percentage
 • Higher is faster but risky
 • Lower is safer but slower

• Target filtering percentage: largest percentage that generates good result
 • Applies to all operators
 • Two approaches: PI controller / Machine learning
Delta-Based Inference for Videos

- Modify neural network to take deltas as inputs
- Decide which deltas are significant enough to process
- Generate a network of mixed-type (dense or delta-based) operators
Mixed Network

Filtering percentage is:
- low (e.g. 0)
- high (e.g. 99)
- medium (e.g. 50)
Mixed Network

• Logical plan: a DAG of operators
• Physical plan: choose between delta op unit / original dense implementation
 • Profile each operator with different filtering percentages
 • Pick the faster variant

Filtering percentage = 99
Evaluation: Setup

- Three object detection models

<table>
<thead>
<tr>
<th>Model</th>
<th>Abbrev.</th>
<th># of FLOPs</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSD-VGG16</td>
<td>ssd-vgg</td>
<td>123B</td>
<td>3s</td>
</tr>
<tr>
<td>FRCNN-RESNET101</td>
<td>frcnn-res</td>
<td>550B</td>
<td>16s</td>
</tr>
<tr>
<td>FRCNN-INCEPTION-RESNET-V2</td>
<td>frcnn-incep</td>
<td>1395B</td>
<td>41s</td>
</tr>
</tbody>
</table>

- Six 10-minute videos from three YouTube live streams
 - Taken at different times (e.g. day/night) for each stream
 - Typical objects: people, cars, buses, boats, ...
 - One frame per second

- TensorFlow, one CPU thread, Amazon EC2 r3.2xlarge
Evaluation: End-to-End Comparison

- Highest runtime savings by PI controller
 - When error less than a threshold
Deluceva: Conclusion

• Observe rich temporal redundancy in videos
• Accelerate model inference by processing significant deltas only
 • Modify NN models to consist of sparse & dense ops
 • Adjust the filtering granularity adaptively
 • Generate a network of mixed-type operators based on cost models
• Improve runtime up to 67% with low error
• Applies to convolutional neural network models

• Ongoing: GPU implementation, compare to other work