
DBMS support for deep
learning over image data
Parmita Mehta, Magdalena Balazinska, Andrew Connolly, and Ariel Rokem
University of Washington

Modern Data Management Requirements

Astronomy:
1. Data cleaning
2. Object extraction
3. Classification

Picture from Deep Lens
Survey (DLS: Tyson)

Data from the Human
Connectome projectNeuroscience:

1. Image processing
2. Denoising
3. Model fitting

● Manage image and video data
● Build complex machine learning models

Ophthalmology
1. Classification
2. Segmentation
3. Clustering

Picture from Prof. Aaron Lee

Consumer data:
1. Object detection
2. Classification
3. Description

Picture from Google image search

Use case : Optical coherence tomography (OCT)

OCT uses light waves to take cross-section pictures of retina to diagnose:

● macular hole, pucker, and edema
● age-related macular degeneration
● central serous retinopathy
● diabetic retinopathy

We got some good results

https://ai.googleblog.com/2016/08/improving-inception-and-image.html

Model Building is a Messy Process

1. Different versions of the data with different metadata
2. Choose data and prepare it (e.g., crop it)
3. Build a model, train it, and evaluate it on development subset of data
4. Try to figure out why results terrible
5. Clean data, re-organize data, enhance data
6. Think of a new model and go back to step 3
7. Now compare the various models
8. Keep track of data subsets, models, model parameters, etc.
9. Maybe one day finally write the paper
10.And then when revision request comes back, try to remember all

above

Key Challenges

● Large data volumes
● Slowness of lifecycle: train/test/change
● Cognitive burden of keeping track of data and models
● Correctness - don’t use test set to tune the model

Not seeking to replace ML libraries! But extend them with data management capabilities

Our Approach: ODIN DB

ODIN Architecture

Relational	Engine

API:	DSL

Python SQL ...

Query	
Optimizer

Physical	
Tuner

Parallel
Execution

Extend RDBMS with
constructs to easily
express tasks
associated with model
building and
debugging

Not seeking to
replace ML libraries!
But extend them with
data management
capabilities

ODIN Prototype

Visual	Data	
Management	System	

(VDMS)	*

API:	DSL

Python SQL

Query	
Optimizer

Physical	
Tuner

https://github.com/IntelLabs/vdms/wiki

Extended
Storage
Layer

VDMS is a new
system from Intel,
designed specifically
to store and query
image databases

Our Data Model and Domain Specific Language

● Experiment ID
● Image ID
● Activation for all neurons
● Predicted class

Per
Image

Parameters

● Generate / Delete
● Select
● Generate Attribution for Image ID(s)

● Experiment ID
● Model ID
● Data Sets (test set, training set etc)

● Results (accuracy, F1, recall etc)
● Meta-data (epochs, learning rate, etc.)

Experiments
● Insert / Delete / Update
● Select
● Generate Maximized Image

● Model ID
● Name
● Definition (JSON)

● Meta-data(e.g. # of classes, type etc.)

Models
● Insert / Delete / Update
● Select

● Image ID
● Image (as blob)
● Label

● Meta-data (e.g. age, patientID etc.)
Images

● Insert / Delete / Update
● Select (e.g. create training set)
● Crop, Rotate, Blur, Resize ...

Example Database
Images: OCT_Images

Image-
ID

Label Slice
-ID

Patient
-ID

Age G Visual
Acuity

Diag Image

b06e7bfc444c
93db26a7c6a
5d4d234-
00033918-
026.png

ERM 26 b06e7bfc444c
93db26a7c6a5
d4d234

52.28 1 0.48 [1, 0, 0, 0]

6cc38578fc7f
24f21519d14f
776d4c-
00168131-
029.png

AMD 29 6cc38578fc7f2
4f21519d14f77
6d4c

90.05 1 0.7 [0, 1, 0, 0]

● Image ID
● Image (as blob)
● Label

● Meta-data (e.g. age, patientID etc.)

Example Database
Models: OCT_Models

Model-
ID

Name Definition Classes Type Input Number
of
Params

1 VGG-16-BN JSON 4 Multi-class (256,256) 134,276,034

2 Inception-V3 JSON 4 Multi-label (299,299) 24,348,324

● Model ID
● Name
● Definition (JSON)

● Meta-data(e.g. # of classes, type etc.)

Example Database
Experiments: OCT_Experiments

Experiment-
ID

Model-
ID

Train Test Acc Epochs Initial-
LR

1 1 retina-train2 retina-test2 78.8 50 1e-3

25 1 retina-train2 retina-test2 90.05 150 1e-4

● Experiment ID
● Model ID
● Data Sets (test set, training set

etc)
● Results (accuracy, F1, recall etc)
● Meta-data (epochs, learning rate,

etc.)

Example Database
Per Image Parameters : OCT_LIP

Experiment-
ID

Image-ID Activation Predicted
class

25 b06e7bfc444c93db26a7c6a5d4d234-00033918-
026.png

JSON 2

25 6cc38578fc7f24f21519d14f776d4c-00168131-
029.png

JSON 3

● Experiment ID
● Image ID
● Activation for all neurons

● Predicted class

Queries

1. Basic queries
a. Select images/models/experiments based on metadata
b. Execute user-defined code on any of the data (e.g., train model)

2. Model-debugging queries
a. What is the model learning?
b. What are representative images that classifier gets wrong?

3. Model comparison queries
a. Why is this model better? What are the models learning differently?

4. Data inspection queries
a. What are the important features in my data?

Easy

Slow and hard to
express

Research Questions

1. Materialization vs Re-processing:
a. Storing intermediates requires tens to hundreds of GB of storage
b. Re-running model for each diagnostic query is slow
c. What are the trade-offs for materialization vs regeneration?
d. How best to compress the materialized data?

2. Expressivity:
a. How best to extend relational model to express queries easily?

3. Extensibility:
a. This is an active research area, how to build extensibility into the

system to allow new operations and classes of machine learning?

Conclusion

● Images and videos are common data types today
● Workloads primarily focus on machine learning / deep learning
● Database management systems provide limited to no support
● ODIN DB is a new DBMS that extends relational systems with

