
Scalable, survivable, strongly consistent, SQL

CockroachDB

presented by Daniel Harrison / Member of Technical Staff

@cockroachdb

About Me

• Previously Google and Foursquare

• At Cockroach Labs for two and a half years

• We have several distributed consensus experts but I

am not one of them

@cockroachdb

● Motivation

● High-level architecture

● Some CockroachDB Features

● Q & A

● Interruptions are encouraged!

Agenda

@cockroachdb

Motivation

@cockroachdb

Limitations of Existing Databases

Relational
Hard to scale horizontally

NoSQL
Scalability with strings attached

OR

● Limited transactions: developer
burden due to complex data
modeling

● Limited indexes: lost flexibility
with querying and analytics

● Eventual consistency:
correctness issues and higher
risk of data corruption

● Scalability: manual sharding
results in high operational
complexity and application
rewrites

● Replication: wasted resources
(stand-by servers) or lost
consistency (asynchronous
replication)

@cockroachdb

CockroachDB: The Best of Both Worlds

• Single binary/symmetric nodes

• Applications see one logical DB, including cross-datacenter, global

• Self-healing/self-balancing

• Scale out is as simple as adding nodes

• SQL

@cockroachdb

High-Level Architecture

@cockroachdb

Abstraction Stack

SQL

Transactional KV

Distribution

Replication

Storage

@cockroachdb

Transactional KV

SQL

Transactional KV

Distribution

Replication

• Monolithic sorted key-value map

• Automatically replicated and distributed

• Consistent

• Self-healing

@cockroachdb

Transactional KV: ACID

SQL

Transactional KV

Distribution

Replication

• Atomicity. All operations or no operations.

• Consistency. No violating constraints.

• Isolation. Exclusive database access.

• Durability. Committed data survives crashes.

@cockroachdb

SQL: Structured Data Model
Inventory

● Tables

@cockroachdb

SQL: Structured Data Model

● Tables
● Rows

Inventory

@cockroachdb

SQL: Structured Data Model

ID Name Quantity

1 Glove 1

2 Ball 4

3 Shirt 2

4 Shorts 12

5 Bat 0

6 Shoes 4

● Tables
● Rows
● Columns

Inventory

@cockroachdb

SQL: Structured Data Model

Name

Ball

Bat

Glove

Shirt

Shoes

Shorts

ID Name Quantity

1 Glove 1

2 Ball 4

3 Shirt 2

4 Shorts 12

5 Bat 0

6 Shoes 4

● Tables
● Rows
● Columns
● Indexes

InventoryName_Idx

@cockroachdb

SQL

SQL

Transactional KV

Distribution

Replication

CREATE TABLE inventory (

id INTEGER PRIMARY KEY,

name VARCHAR,

quantity INTEGER,

 INDEX name_index (name)

);

@cockroachdb

SQL: Key anatomy

key /<table>/<index>/<key>/<column> Value

/inventory/primary/1/name Apple

/inventory/primary/1/quantity 12

/inventory/primary/2/name Orange

/inventory/primary/2/quantity 15

id name quantity

1 Apple 12

2 Orange 15

=

INSERT INTO inventory VALUES (1, ‘Apple’, 12);
INSERT INTO inventory VALUES (2, ‘Orange’, 15);

@cockroachdb

Distribution: Sharding
The data is split into ~64MB ranges. Each holds a contiguous range of
the key space.

Ø-lem

apricot

banana

blueberry

cherry

grape

lem-pea

lemon

lime

mango

melon

orange

pea-∞

peach

pear

pineapple

raspberry

strawberry

@cockroachdb

Distribution: Index

Ø-lem

apricot

banana

blueberry

cherry

grape

lem-pea

lemon

lime

mango

melon

orange

pea-∞

peach

pear

pineapple

raspberry

strawberry

Ø-lem lem-pea pea-∞

shard index

An index maps from key to range ID

@cockroachdb

Distribution: Split

Ø-lem

apricot

banana

blueberry

cherry

grape

lem-pea

lemon

lime

mango

melon

orange

pea-str

peach

pear

pineapple

raspberry

Ø-lem lem-pea

shard index

str-∞

strawberry

tamarillo

tamarind

str-∞pea-str

Split when a range is too large (or too hot, or…)

@cockroachdb

Replication: Survivability

SQL

Transactional KV

Distribution

Replication

● Each range is replicated to three or more

nodes

● Consensus via Raft

● "Leaseholder" optimization to allow reads

to be served without consensus

● Multi-Version Concurrency Control

@cockroachdb

Data Distribution: Placement

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Range 2Range 3 Range 3

Range 2

Range 3

Each range is replicated
to three or more nodes

@cockroachdb

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Node 4

Range 2Range 3 Range 3

Range 2

Range 3

Adding a new (empty)
node

@cockroachdb

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Node 4

Range 2Range 3 Range 3

Range 2

Range 3

Range 3

A new replica is
allocated, data is
copied.

@cockroachdb

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Node 4

Range 2Range 3 Range 3

Range 2

Range 3

Range 3

The new replica is made
live, replacing another.

@cockroachdb

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Node 2
Range 1

Range 2

Node 3
Range 1

Node 4

Range 2Range 3 Range 3

Range 2

Range 3

The old (inactive) replica
is deleted.

@cockroachdb

Data Distribution: Rebalancing

Node 1
Range 1

Range 2

Range 2

Node 2 Node 3
Range 1

Node 4

Range 2Range 3

Range 1

Range 3

Range 2

Range 3

Process continues until
nodes are balanced.

@cockroachdb

Data Distribution: Recovery

Node 1
Range 1

Range 2

Range 2

Node 2 Node 3
Range 1

Node 4

Range 2Range 3

Range 1

Range 3

Range 2

Range 3

X Losing a node causes
recovery of its replicas.

@cockroachdb

Data Distribution: Recovery

Node 1
Range 1

Range 2

Range 2

Node 2 Node 3
Range 1

Node 4

Range 2Range 3

Range 1

Range 3

Range 2

Range 3

X
Range 1

Range 3

A new replica gets
created on an existing
node.

@cockroachdb

Data Distribution: Recovery

Node 1
Range 1

Range 2

Range 2

Node 3
Range 1

Node 4

Range 2Range 3

Range 2

Range 3

Range 1

Range 3

Once at full replication,
the old replicas are
forgotten.

@cockroachdb

Some CockroachDB Features

@cockroachdb

Geographic Zone Configurations

● Control where your data is

● Nodes are tagged with attributes and hierarchical localities

● Rules target these

● Zero downtime data migrations

@cockroachdb

Geo-Partitioning

■ Domicile data according to
customer

○Meet regulatory constraints

○Low-latency reads / writes

■ One logical database

○Simplified app development

@cockroachdb

Distributed SQL
SELECT l_shipmode, AVG(l_extendedprice) FROM lineitem GROUP BY l_shipmode;

@cockroachdb

Online Schema Changes

• Based on Google's F1 Paper

• State machine, possibly with backfill

• Appears instantaneous to the client

• Zero downtime

@cockroachdb

Backup/Restore

• Distributed

• Consistent to a point in time

• Incremental

@cockroachdb

Other Topics

• (New) Query optimizer

• Graphical Admin UI

• Distributed Import

• (New) Change Data Capture

Questions?
jobs@cockroachlabs.com

github.com/cockroachdb

www.cockroachlabs.com

https://github.com/cockroachdb
http://www.cockroachlabs.com

