Learning-based Cost Management for Cloud Databases

Olga Papaemmanouil
Brandeis University
Outline

Motivation

Offline Learning

Online Learning

Conclusions
Outline

- Motivation
- Offline Learning
- Online Learning
- Conclusions

- Cloud Databases
- Challenges
- Why Machine Learning?
Cloud Computing

Paradigm shift: infrastructure, data processing

- economies of scale
- capital expenditure
- pay-as-you-go
Cloud Databases Landscape

Database-as-a-Service
- Managed DBMS
- Relational & NoSQL DBs

IaaS-based DB Instances
- Non managed DBMS
- Do It Yourself model

Infrastructure as a Service (IaaS)
IaaS-deployed Databases

App Management Tools
- Monitoring resources, performance, cost
- Event-driven scaling
- NO cost vs performance optimization

Data Management Application
- Microsoft SQL Server
- MySQL
- PostgreSQL
- Oracle

IaaS Provider

StackDriver Monitoring

Trusted Advisor
AWS Cloud Optimization Expert

OpsWorks
Deployment Challenges

Data Management Application

Custom-built application management tools

IaaS Provider

Microsoft SQL Server, MySQL, PostgreSQL, Oracle
Deployment Challenges

Meet SLOs (Service Level Objective)
- Query-level: response time
- Workload level: average, total, max, percentile

Offer SLAs (Service Level Agreement)
- SLO+ Violation penalties

Pay-as-you-go Model

Data Management Application

Cost Management

Performance Management

IaaS Provider

Microsoft SQL Server, MySQL, PostgreSQL, Oracle
Deployment Challenges

NP-hard problem

Beyond monitoring & alerts
- Automatic scale up & down
- Query routing & scheduling
- Cost-driven decisions
- SLA-awareness

Data Management Application

- Cost Management
- Performance Management
- Resource Provisioning
- Workload Scheduling

IaaS Provider

Database Systems:
- SQL Server
- MySQL
- PostgreSQL
- Oracle
State-of-the-art

<table>
<thead>
<tr>
<th>Placement</th>
<th>Provisioning</th>
<th>Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMAX (Liu et al.)</td>
<td>Auto (Rogers et al.)</td>
<td>Dolly (Cecchet et all)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shepherd (Chi et al.)</td>
</tr>
<tr>
<td>SLATree (Chi et al.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-tenant SLOs (Lang et al.)</td>
<td></td>
<td>iCBS (Chi et al.)</td>
</tr>
<tr>
<td>Delphi / Pythia (Elmore et al.)</td>
<td>Hypergraph (Çatalyürek et al.)</td>
<td></td>
</tr>
<tr>
<td>SCOPE (Chaiken et al.)</td>
<td>Bazaar (Jalaparti et al.)</td>
<td>many traditional methods ...</td>
</tr>
</tbody>
</table>
State-of-the-art

<table>
<thead>
<tr>
<th>Placement</th>
<th>Provisioning</th>
<th>Scheduling</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMAX (Liu et al.)</td>
<td>Auto (Rogers et al.)</td>
<td>Dolly (Cecchet et all)</td>
</tr>
<tr>
<td>SLATree (Chi et al.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-tenant SLOs (Lang et al.)</td>
<td></td>
<td>iCBS (Chi et al.)</td>
</tr>
<tr>
<td>Delphi / Pythia (Elmore et al.)</td>
<td></td>
<td>Hypergraph (Çatalyürek et al.)</td>
</tr>
<tr>
<td>SCOPE (Chaiken et al.)</td>
<td></td>
<td>Bazaar (Jalaparti et al.)</td>
</tr>
</tbody>
</table>
Wish List

End-to-end cost-aware service
(resource provisioning, workload scheduling)

Application-defined performance goals
(per query deadline, percentile, average latency, max latency)

Agnostic to workload semantics

Challenges

complex interactions

arbitrary goals

arbitrary workloads

machine learning: auto modeling and insight
WiSeDB Advisor

Offline Learning
- batch scheduling

Online Learning
- online scheduling
- performance model free

Data Management Application
- Cost Management
- SLA Management
- Resource Provisioning
- Workload Scheduling

IaaS Provider

Software:
- Microsoft SQL Server
-MySQL
- PostgreSQL
- Oracle
WiSeDB: A Learning-based Workload Management Advisor for Cloud Databases,
Ryan Marcus, Olga Papaemmanouil, VLDB 2016
WiSeDB – Batch Processing

Workload & SLO Spec

Penalty Function
$$/sec past deadline

Data Management Application

(Offline) Training

Model Generator
WiSeDB – Batch Processing

Workload & SLO Spec

Data Management Application

(Offline) Training

Model Generator

SLA Spec

$$/sec past deadline

- OLAP on full replicas (no updates)
- Known queries
- Performance model
WiSeDB – Batch Processing

Original SLO

- $0.12
- 3min
- SLO: 3min

- $0.20
- 1min
- SLO: 1min

Stricter SLO

- $0.15
- 2.5min
- SLO: 3min

- $0.13
- 0.15min
- SLO: 1min

Data Management Application

(Offline) Training

- Model Generator
- Strategy Recommendations
Batch Execution

- Resources to rent
 - # VMs/ type
- Query scheduling
 - Query execution order for each recommended VM

Data Management Application

(Offline) Training
- Model Generator
- Strategy Recommendations

(Online) Resource & Workload Management
- Strategy Generator

ASSUMPTIONS
- OLAP on full replicas (no updates)
- Known query types
- Performance prediction model
Supervised Learning

- identify classes
- create training data
- generate classifier

classes == actions

dispatch a query to a VM
provision new VM

context of actions

identify best decisions
extract cost-related features

describe (context, action)
interpretable: offers insight

Model Generator
“To be the best, learn from the best” (D. LaCroix)

Offline Learning
- identify best decisions
 1. Generate small workload
 2. Build decision graph
 - query assignment
 - VM provisioning
 3. Find optimal (minimum cost) solution (path)
 4. Extract context of optimal decisions
- generate model
 1. Repeat for many sample workloads
 2. Build a training set of (feature, action)
 3. Train a classifier

Runtime Scheduling
- apply model
 1. Use classifier for
 - batch scheduling
 - online scheduling
 - performance vs cost exploration
Monetary Cost
- Resource usage ($$/time)
 - time = VM start up + query execution

- Violation fees
 - Penalty function (black box)
Search for Optimal

A* search (best-first) for optimal
Search for Optimal

A* search (best-first) for optimal

Graph-based Approach Pros
- Step-by-step decisions
- Graph reduction techniques
- Fast search for optimal
Feature Extraction

Agnostic to
- Query semantics
- Performance goal (SLO)
- Workload size

Decision: Assign Q to VM

Features:
- unassigned Q: true
- unassigned Q: false
- cost of assigning Q: $2
- wait time on VM: 1min
- % of Q in VM: 50%
- % of Q in VM: 50%
Decision Model

- Wait time?
 - >=2
 - <2
 - New VM
 - Is Q unassigned?
 - True
 - Cost of assign Q?
 - <100
 - >=100
 - Assign Q to VM
 - New VM
 - False
 - Assign Q to VM

Strategy Generator

- Reserve new VM (VM₁)
- Assign Q to VM₁
Decision Model

wait time?

>=2

new VM

is unassigned?

true

cost of assign ?

<100

assign

false

>=100

assign

is unassigned?

ture

false

assign

new VM

SLO: 1min

1min

SLO: 3min

2min

Reserve new VM (VM₁)

Assign to VM₁

Assign to VM₁

Strategy Generator
Decision Model

- **wait time?**
 - >=2
 - <2

- **is unassigned?**
 - true
 - false

- **cost of assign?**
 - <100
 - >=100

- **assign**

Strategy Generator

- Reserve new VM (VM₁)
- Assign to VM₁
- Reserve new VM (VM₂)
- Assign to VM₂

SLO: 1min
SLO: 3min
Strategy

wait time?

>=2

new VM

is unassigned?

true

cost of assign ?

<100

assign

false

>=100

assign

is unassigned?

true

assign

false

new VM
Experimental Setup

Training Data
3000 samples
10 TPC-H templates
18 queries/sample

![Bar chart showing cost (cents) by query type for WiSeDB and Optimal](chart.png)

- **Query execution time <= x secs**
 - (same deadline per template)
Experimental Setup

Training Data
- 3000 samples
- 10 TPC-H templates
- 18 queries/sample

![Graph showing average latency costs for WiSeDB and Optimal.](image)

- Average latency of the workload \(\leq x \) secs
- Graph X-axis: PerQuery, Average, Max, Percent
- Y-axis: Cost (cents)
Training Data
3000 samples
10 TPC-H templates
18 queries/sample
Experimental Setup

Training Data
- 3000 samples
- 10 TPC-H templates
- 18 queries/sample

![Graph showing cost (cents) for different performance metrics.](image)

- **Execution time of 90% of queries in the workload <= x secs**
Experimental Setup

Training Data
- 3000 samples
- 10 TPC-H templates
- 18 queries/sample

Testing Data
- 10 TPC-H templates
- varied queries/workload

![Bar chart showing cost (cents) for different metrics (PerQuery, Average, Max, Percent) with two categories (WiSeDB Optimized) and (Optimal).]
Experimental Setup

Training Data
- 3000 samples
- 10 TPC-H templates
- 18 queries/sample

Testing Data
- 10 TPC-H templates
- varied queries/workload

cost: resource utilization + penalties

AWS Cloud
- fees penalty $0.01/sec of violation
Effectiveness (small workloads)

Training Data
- 3000 samples
- 10 TPC-H templates
- 18 queries/sample

Testing Data
- 10 TPC-H templates
- 30 queries/workload

Optimal: Brute force

WiSeDB models are within 8% of the minimum cost solution
Effectiveness (large workloads)

Training Data
3000 samples
10 TPC-H templates
18 queries/sample

Testing Data
10 TPC-H templates
5000 queries/workload

One heuristic cannot fit all

WiSeDB learns the right heuristic

One heuristic cannot fit all

WiSeDB learns the right heuristic

Best: shortest query first
Best: longest query first
Best: top-90% shortest then 10% longest queries

Training Data
3000 samples
10 TPC-H templates
18 queries/sample

Testing Data
10 TPC-H templates
5000 queries/workload

One heuristic cannot fit all

WiSeDB learns the right heuristic

Best: shortest query first
Best: longest query first
Best: top-90% shortest then 10% longest queries
Training Overhead

Training Data
- 3000 samples
- 10 TPC-H templates
- 18 queries/sample

Offline learning overhead
- 20sec – 120 sec
Beyond Batch Scheduling

• Efficient performance vs cost trade off exploration
 • Recommend strategies with stricter/looser performance goals
 • Reuse original training set to generate quickly alternative models
 • Best-first heuristic reduces search time (dominant training factor)
 • Training overhead improvement by 96-98%

• Online scheduling (query at a time)
 • Challenge: arrival times are unknown and hence not modeled
 • Generate a new model upon arrival of new query: too expensive
 • Optimization 1: Adapt previous model to reduce training overhead
 • Optimization 2: Reuse past models, when feasible
Offline Learning

Advantages
- Provides insight on complex decisions
- Learns custom strategies per application
- Explores performance vs cost trade-offs

Data Management Application

(OFFLINE) Training
- Model Generator
- Strategy Recommendations

(ONLINE) Resource & Workload Management
- Strategy Generator

IaaS Provider
VM VM VM VM

Cloud Storage

VM VM VM VM
Offline Learning

Limitations
- Static decision models
- Batch scheduling
- Performance model

Data Management Application

(Offline) Training
- Model Generator
- Strategy Recommendations

(Online) Resource & Workload Management
- Strategy Generator

IaaS Provider
VM VM VM VM
Outline

Motivation

Offline Learning

Online Learning

Conclusions

- Explicit vs Implicit Modeling
- Reinforcement Learning

Releasing Cloud Databases from the Chains of Predictions Models.
Ryan Marcus, Olga Papaemmanouil, CIDR 2017
(Explicit) Performance Prediction

- **DBMS-related challenges**
 - isolated vs. concurrent query execution
 - low accuracy for new query types (“templates”)
 - extensive off-line training
 - state-of-the-art: 15-20% prediction error*

- **Cloud-related challenges**
 - “noisy neighbors”
 - numerous resource configurations
 - predictions errors accumulation

* Contender: A Resource Modeling Approach for Concurrent Query Performance Prediction, Jenny Duggan, Olga Papaemmanouil, Ugur Cetintemel, Eli Upfal, **EDBT 2015**

* Performance Prediction for Concurrent Database Workloads, Jennie Rogers, Ugur Cetintemel, Olga Papaemmanouil, Eli Upfal, **SIGMOD 2011**
WiSeDB: Implicit Performance Modeling

- Explicit performance models are NOT necessary for:
 - monetary cost management
 - resource & workload management
 - offer performance SLA and keep penalties low

- Implicitly model query latency
 - predict monetary cost (& violation penalties)

- Online training for dynamic environments
 - Automatic scaling & workload distribution

Wish List #2
Reinforcement Learning

- Continuous learning
- Explicit reward modeling
- Action selection
 - maximize reward

agent

Environment

action → reward → observation

internal state (past experiences)
CMABs
(Contextual Multi-Armed Bandits)

Contextual Multi-Armed Bandit Problem

Armed Bandit = Slot Machine

Which slot machine to play (action) so that you walk out with the most $$$ (reward)??
CMABs in WiSeDB
(Contextual Multi-Armed Bandits)

Contextual Multi-Armed Bandit Problem
Slot Machine = Virtual Machine

Which machine to use (new/old) (action) so that you execute the incoming query with minimum cost $$ (cost)?
CMABs in WiSeDB
(Contextual Multi-Armed Bandits)

Action (per VM)
- Accept
- Pass to next/new VM
- Down one VM tier

Reward
- $$ cost: processing & SLA violation penalties

Observation
- environment context (query, VM)
- action
- $$ cost

Data Management Application

- SLA
- internal state (past experiences)
- action
- cost $$
- observation

IaaS Provider

- VM Tier 1
- VM Tier 2
CMABs in WiSeDB
(Contextual Multi-Armed Bandits)

Action (per VM)
- Accept
- Pass to next/new VM
- Down one VM type

Reward
- $$ cost: processing & SLA violation penalties

Observation
- environment context (query, VM)
- action
- $$ cost

Data Management Application

- SLA
- internal state (past experiences)
- action
- cost $$
- observation

IaaS Provider

VM Tier 1
VM Tier 2
pass
down
accept
CMABs in WiSeDB (Contextual Multi-Armed Bandits)

Action (per VM)
- Accept
- Pass to next/new VM
- Down one VM type

Reward
- $$ cost: processing & SLA violation penalties

Observation
- environment context (query, VM)
- action
- $$ cost

Data Management Application

- **SLA**
- **internal state** (past experiences)
- **action**
- **cost $$**
- **observation**

IaaS Provider

- Tier 1 VMs
- Tier 2 VMs
CMABs in WiSeDB
(Contextual Multi-Armed Bandits)

Action (per VM)
- Accept
- Pass to next /new VM
- Down one VM type

Reward
- $$ cost: processing & SLA violation penalties

Observation
- environment context (query, VM)
- action
- $$ cost

Data Management Application

- action
- cost $$
- observation

- (pass, context, $$)
- (down, context, $$)
- (accept, context, $$)

IaaS Provider

VM Tier 1

VM Tier 2

VM

VM

VM
CMABs in WiSeDB
(Contextual Multi-Armed Bandits)

Action (per VM)
- Accept
- Pass to next /new VM
- Down one VM type

Reward
- $$ cost: processing & SLA violation penalties

Observation
- environment context (query, VM)
- action
- $$ cost

Data Management Application

SLA
- (pass, context, $$)
- (down, context, $$)
- (accept, context, $$)

IaaS Provider

VM Tier 1
- pass

VM Tier 2
- pass
- accept
Online Learning

Context Features

- **VM context**
 - memory, I/O rate
 - #queries in queue

- **Query context**
 - tables used by current query
 - tables used by old query
 - # table scans
 - # joins
 - # spill joins
 - cache reads in the plan

Data Management Application

- **Model Generator**
- **Context Collector**
- **Experience Collector**

- **IaaS Provider**
- **VMs**
Online Learning

Action Selection

- **Explore** opportunities
 - gather information
- **Exploit** “safe” actions
 - make best decision given current information

Data Management Application

- Model Generator
- Context Collector
- Experience Collector
- IaaS Provider

- VM
- VM
- VM
- VM
Probabilistic Action Selection

- Select action according to probability of being the best
- Past observations (action, context, cost) \(D = \{(x_i, a_i, c_i)\} \)
 - modeled by likelihood function over cost \(c : P(c | \alpha, x, \theta) \)
- \(\theta \): parameters of likelihood function: splits of a regression tree
 - if (\# joins in the query =1) and (queries in the queue =3) => cost = $$

- Posterior distribution of \(\theta \) (Bayes rule)
 \[
P(\theta | D) \propto \prod P(c_i | a_i, x_i, \theta)P(\theta)
 \]
 - \(P(\theta) \): prior distribution of parameters \(\theta \)

- Choose action \(\alpha' \) to minimize cost for perfect model \(\theta^* \)
 \[
 \min_{\alpha'} E(c | \alpha', x, \theta^*)
 \]
Probabilistic Action Selection

- **Exploitation**: pick action based on mean of posterior $P(\theta|D)$
 \[
 \min_{a'} E(c | a', x) = \int E(c | a', x, \theta) P(\theta | D) d\theta
 \]

- **Exploration**: pick a random action

- **Thompson Sampling**: balance exploration/exploitation

 Select random action according to probability that it is the best
WiSeDB Action Selection

Select a random training set, generate the regression tree and pick best action according to it

Update the experience set

Create new model
Effectiveness

Training Data
30 query sequence
22 TPC-H templates
repeat until convergence

Optimal: brute force (NP-hard)
Clairvoyant: perfect cost model

Amazon AWS
t2.large, t2.medium, t2.small

WiSeDB models can perform at the same cost as a perfect cost model
Effectiveness (concurrency)

Training Data
- 22 TPC-H templates
- 900 queries/hour
- Poison distribution

Clairvoyant: perfect cost model

One query/vCPU: 1-2 queries

Two queries/vCPU: 2-4 queries

WiSeDB models handles concurrency levels with no pre-training or tuning
Adaptivity

Training Data

13 TPC-H templates
900 queries/hour
Poison distribution
Max SLO

all new at once: 7 new templates
every 2000 queries (after convergence)

new over time: 1 new template
every 500 queries

WiSeDB models quickly adapt to new unseen before templates
Next Steps: Prediction-free Batch Scheduling

- Train once, use “forever”?
 - obsolescence detection and correction
- SVMs: Support Vector Machines
 - detect decision boundaries based on cost, SLO slack, SLA violation risk

Data Management Application

- Cost Management
- SLA Management
- Resource Provisioning
- Workload Scheduling

IaaS Provider

VM

VM

VM

VM

3min

SLO: 3min

1min

SLO: 1min
Next Steps: End-to-End Online Learning

- Query Scheduling
 - query ordering actions
- Shut-down strategy
 - hill-climbing learning
- Training overhead
 - search space reduction
 - warm bootstrapping

Data Management Application

- Cost Management
- SLA Management
- Resource Provisioning
- Workload Scheduling

IaaS Provider

VM
VM
VM
VM

VM
VM
VM
VM

Database
Database
Database
Database
Next Steps: Learning-based Pricing

- Resource consumption & SLA pricing
 - Predicted cost == minimum price
 - no SLA violation fees
- System & economics interplay
 - fairness & competition affects system design
 - “learn” the pricing scheme & system decisions that offers pricing fairness

Data Management Application

- Cost Management
- SLA Management
- Resource Provisioning
- Workload Scheduling

IaaS Provider

VM
VM
VM
VM
Conclusions

- Cost and performance management for IaaS-deployed data managements apps are becoming more complex
 - human ability to derive insight remains the same

- WiSeDB demonstrates how ML techniques can
 - offer insight on the complex interplay of cost vs performance
 - discover customized solutions for app-specific SLAs
 - automate complex application management decisions
 - adapt to workload and resource configurations
 - build systems that perform beyond unaided human heuristics
Our Database Group

Ryan Marcus
Cloud Databases
Machine Learning

Kyriaki Dimitriadou
Interactive Data Exploration
Machine Learning

Zhan Li
Benchmarking Optimizers
Statistical Analysis
THANK YOU

Questions?