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ABSTRACT
We demonstrate VisualCloud, a database management system de-
signed to efficiently ingest, store, and deliver virtual reality (VR)
content at scale. VisualCloud targets both live and prerecorded
spherical panoramic (a.k.a. 360◦) VR videos. It persists content
as a multidimensional array that utilizes both dense (e.g., space and
time) and sparse (e.g., bitrate) dimensions. VisualCloud uses orien-
tation prediction to reduce data transfer by degrading out-of-view
portions of the video. Content delivered through VisualCloud re-
quires up to 60% less bandwidth than existing methods and scales
to many concurrent connections.

This demonstration will allow attendees to view both live and
prerecorded VR video content served through VisualCloud. View-
ers will be able to dynamically adjust tuning parameters (e.g., bi-
trates and path prediction) and observe changes in visual fidelity.

1. INTRODUCTION
Recent advances in computing and network hardware have in-

creased interest in immersive 3D virtual reality (VR) applications.
Spherical panoramic VR videos (a.k.a. 360◦ videos) are one pop-
ular example of these applications; other examples include VR
games and augmented reality (AR). 360◦ videos allow a user,
through the use of a VR head-mounted display or mobile device
(a headset), to observe a scene from a fixed position at any angle.
The videos are captured using multiple cameras and produced using
software that stitches together parts of each frame to produce an ap-
proximate (potentially stereoscopic) spherical representation [14].
Devices that support the ability to record and view VR video have
become increasingly popular, and efficiently managing this type of
data has thus become increasingly important.

Data volume is a major challenge of VR applications, especially
in the presence of mobile viewers, which are subject to bandwidth
and battery power constraints. Data sizes involved in streaming
and storing 360◦ videos far exceed those seen with ordinary 2D
videos. A single frame of uncompressed 2D ultra high-definition
(UHD) video at 4K resolution (3840 × 2160 pixels) requires ap-
proximately 24MB to store [1]. In contrast, to render UHD 360◦

video on a headset with a 120◦ field of view (FOV), we need a
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Figure 1: An equirectangular frame encoded within each 360◦

video (left) and it’s projection onto a sphere. Only a small por-
tion of the sphere is within a user’s field of view at any time.

much larger frame (∼3× higher resolution) since only a portion
of the projection is viewed at any time (see Figure 1). Persisting
each such frame requires more than 9× space compared to its 2D
counterpart. For stereoscopic videos, this requirement doubles!

Existing streaming VR video platforms (e.g., [12]) treat VR
video in the same way as ordinary 2D video, and are thereby
poorly-suited for dealing with the massive quantities of data that
high-resolution VR video streaming requires. When 360◦ video is
delivered over a network, these approaches reduce bandwidth only
in the face of network congestion and do so by sacrificing qual-
ity. The approach that they use, called adaptive streaming (e.g.,
DASH [10]), is illustrated in Figure 2: The server temporally seg-
ments an input video and encodes each n-second fragment at vari-
ous qualities. A client then requests fragments at appropriate qual-
ity based on available network capacity. The fragments are con-
catenated on the client before being rendered. Typical fragment
sizes fall into the range of one to twenty seconds, and the encoding
process may be performed either as a preprocessing step or at time
of request (e.g., for live video).

In contrast to the above, our approach is to develop a system that
can dramatically cut bandwidth requirements without significant
impact on quality. To achieve this goal, we have built a prototype
of a new system, called VisualCloud. The system’s goal is to bet-
ter support VR applications through existing and novel data man-
agement techniques. The current version of the system focuses on
360◦ videos, but we plan to generalize this in the future. The initial
design and prototype further target the effective reduction of band-
width at the viewer without impacting the immersive experience of
360◦ videos. Reducing the amount of data streamed to viewers has
been shown to reduce network traffic and battery consumption [2].

More specifically, VisualCloud is a new database management
system for the storage, retrieval, and streaming of both archived
and live VR data. To reduce the amount of data that needs to be
transferred to viewers, VisualCloud segments 360◦ videos both in
time and in space. This design is inspired by recent work that
demonstrated substantial savings from degrading the out-of-view
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Figure 2: Adaptive streaming in a VR context. On the server,
a video is temporally segmented into 1-20 second slices. Each
slice is encoded at various qualities. A client then requests seg-
ments at a given quality based on network congestion. Seg-
ments are concatenated, projected, and rendered on a headset.

portions of each frame [13]. Since it is advantageous to deliver
out-of-view segments at lower quality, VisualCloud prefetches and
prioritizes the spatiotemporal segments that are most likely to be
viewed. It transfers those segments using the highest resolution and
other segments with lower resolutions. Additionally, VisualCloud
implements in-memory and near real-time 360◦ video partitioning
and preprocessing to generate multi-resolution data segments and
reduce bandwidth utilization even for live streams.

VisualCloud builds on recent work in multidimensional array
processing [8] and develops new techniques for VR data stor-
age and retrieval and near real-time in memory processing of VR
videos. Our system combines the state of the art in array-oriented
systems (e.g., efficient multidimensional array representation,
tiling, prefetching) with the ability to apply recently-introduced op-
timizations by the multimedia (e.g., motion-constrained tile sets)
and machine learning communities (e.g., path prediction). Visu-
alCloud reduces bandwidth (and thus also power) consumption on
client devices, scales to many concurrent connections, and offers an
enhanced viewer experience over congested network connections.

The VisualCloud demonstration will enable attendees to view
both archived and live 360◦ video content served through the Vi-
sualCloud system. Each participant will begin by specifying Vi-
sualCloud tuning parameters (see Figure 5) and then view 360◦

videos served using those parameters. Participants will be in-
vited to contrast video fidelity for their hand-selected configuration
against an expert-tuned configuration and video served using naïve
2D streaming techniques. Attendees will also be able to view the
performance advantages afforded by VisualCloud (see Figure 6).
Bystanders will be able to view the content delivered to users and
bandwidth totals on a separate monitor.

In sum, this demonstration makes the following contributions:
• It presents the architecture of the VisualCloud system.
• It demonstrates that content streamed through VisualCloud

is of similar visual fidelity to video transmitted naïvely; in
particular, an appropriate set of tuning parameters leads to a
viewing experience indistinguishable from naïve delivery.

• It demonstrates that VisualCloud delivers video using up
to 60% less bandwidth when compared to naïve adaptive
streaming approaches.

• It demonstrates the above two points on both archived and
live streaming data sources.

2. BACKGROUND
As illustrated in Figure 1, a VR headset accomplishes the illusion

of immersion by mapping video data onto a spherical geometry and
displaying only the subset of the data that is within the user’s cur-
rent field of view (FOV; typically 90-110◦). Video frames are often
represented internally in rectangular form; this approach allows for
existing 2D video encoding and decoding techniques to be lever-
aged. To convert spherical video frames into rectangular form, a
capture device performs an equirectangular (ER) projection; the
headset performs the inverse projection prior to rendering.

3. THE VISUALCLOUD SYSTEM
The VisualCloud system contains two major subcomponents –

the VisualCloud Server (VCS), which operates on one or more ex-
ternal servers, and the VisualCloud Client (VCC), which runs on a
user’s headset. The main unit of data exchanged between the VCS
and VCC is a video segment, which is a spatiotemporal subset of a
video encoded at a particular quality level. The VCS is responsible
for ingesting live or prerecorded video, spatiotemporally partition-
ing and encoding it, and serving segments to clients. The VCC, as it
receives segments from a server, reconstructs them into a playable
video stream and renders it on a headset. These components and
their interactions are illustrated in Figure 3.

Both the VCS and VCC contain logic (respectively labeled as
the predictor and prefetcher on Figure 3) that serves to identify seg-
ments that are likely to be subsequently viewed, based on a user’s
current position and the behavior of previous users. They also con-
tain a caching layer used to improve performance through the stag-
ing of predicted and prefetched segments.

We discuss the VCS and VCC in the following two sections.

3.1 VisualCloud Server Architecture

3.1.1 Storage Manager
There are several challenges associated with building a storage

layer for VR video applications. The first challenge lies in choosing
the best partitioning of videos into spatiotemporal fragments. The
partitioning must ensure that adaptively streaming fragments yields
a high-quality experience for end-users while effectively reducing
bandwidth. The second challenge lies in laying out the segments on
disk taking into account the fact that spatiotemporal segments may
be encoded at various qualities to reduce data transfer bandwidth.
Finally, for performance reasons it is critical that, where possible,
video is stored in a manner that avoids an expensive intermediate
decode and encode step.

Addressing these challenges, the VCS storage manager (SM) is
responsible for decomposing ingested (potentially live) video and
storing it for subsequent delivery to a client. The SM temporally
decomposes each video into n-second fragments, and then spa-
tially decomposes each fragment into a grid of video segments.
Each three-dimensional segment is then associated with an encod-
ing quality. This decomposition is illustrated in Figure 4.

When persisting each segment, we use the TileDB array-based
database system [8], which we extended to support the HEVC [11]
codec as an internal compression method. TileDB offers an effi-
cient, low-level API for data represented as a multidimensional ar-
ray, and allows arrays to be represented using both dense and sparse
dimensions. Data tiles are compressed using our integrated video
codec and persisted on disk as distinct files.
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Figure 3: The VisualCloud architecture. The server-based components (VCS) are responsible for ingesting, segmenting, transmit-
ting, and storing video. The VCC requests tiles in prediction-based order, stitches segments together, and displays the result on the
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Figure 4: The video spatiotemporal segmentation process,
used both in the storage manager and during in-memory
stream processing. 360◦ videos are segmented in time and then
spatially decomposed into segments. Each segment is stored as
a single encoded fragment.

3.1.2 Prediction
A key challenge for VisualCloud involves predicting which

video segments should be downloaded at high quality. For exam-
ple, downloading all segments at the highest quality wastes band-
width and risks degraded client performance, while choosing to
download important segments at low quality leads to poor user ex-
perience. Correctly predicting user behavior to select only those
segments a user will actually view is critical for performance.

The VCS prediction component (predictor) is used to predict
which video segment a user is likely to look at next. VisualCloud
uses the model in two ways. First, the predictor applies the model
when selecting which segments to degrade in quality (and by how
much). Second, the VCC prefectcher (see Section 3.2.1) applies the
model to determine the order in which video segments are down-
loaded, along with what quality to request.

We build on the orientation prediction approach outlined in the
Outatime system [7] to make these predictions. Outatime builds a
Markov-based model where transition probabilities are applied to
estimate a position and orientation at some future time. Outatime
makes its predictions based on network round trip time. Visual-
Cloud, on the other hand, predicts farther into the future based on
the length of the video segments stored in the SM.

3.1.3 In-Memory Stream Processing
When serving live streams, there is insufficient time to persist

video segments on disk through the storage manager. Instead, the
VCS performs segmentation in-memory as the data arrives from
the capture device. A major challenge here is to create only those
segments that will be needed, and deliver those that are not to the
SM for subsequent processing. To accomplish this selection task,
the VCS leverages the prediction engine and prepares the top-k
segments that are most likely to be viewed using the highest quality
only and increasingly less likely segments using lower qualities.

Additionally, it is critical that the VCS maintain a sufficiently-
large buffer to allow for the various quality levels to be encoded.
The VCS ensures this by beginning with a large initial buffer. As
this is exhausted, the VCS drops encoding quality levels until only
the lowest quality is prepared. As a last resort, the VCS load-sheds
by throttling frames received from the VR capture device.

3.2 VisualCloud Client Architecture

3.2.1 Prefetching
The VCC requests spatiotemporally-segmented video chunks

from the VCS at a given quality. There are two challenges asso-
ciated with this process. First, a client must decide what order to
use when retrieving the segments – for the best visual experience
it is advantageous to prioritize the segments that are likely to be
viewed. The client must also decide what quality to request when
obtaining segments. Segments that are rarely viewed can be safely
requested at low quality, while a segment that is likely to be viewed
(even if not in the current orientation) should be prioritized. These
decisions must be made both for the current time and, when possi-
ble, for future periods.

The VCC prefetcher addresses this problem by obtaining the pre-
diction model exposed by the predictor (see Section 3.1.2) and us-
ing it to generate a ranking of segments viewed by previous users.
It ranks each segment using a method similar to that described in
the Forecache system [3], but extends it to support the temporal
dimension.

3.2.2 Stitching
Once the VCC has obtained a set of segments (at various quali-

ties) for a given unit of time, it must reassemble those segments into
an equirectangular video suitable for playback. VisualCloud adopts
a technique similar to that described by Zare et al. [13] that allows
segments to be simply and efficiently concatenated. This avoids the
need to individually decode each segment and re-encode them as a
unified video, which is extremely computationally expensive.
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Figure 5: The configuration user interface for the VisualCloud
demo. Users select a video to view along with prediction and
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Figure 6: A user’s headset view of the 360◦ video selected and
configured in Figure 5. Overlaid is the current bandwidth con-
sumption under the selected configuration.

4. DEMONSTRATION
Our demonstration will enable attendees to view 360◦ video con-

tent served through VisualCloud at various fidelity levels. Each
participant will begin by configuring his or her viewing experience.
This involves first selecting what to view; participants may choose
either a live feed or from several prerecorded videos. Participants
will then adjust VisualCloud tuning parameters, which include pre-
diction algorithm and hyperparameters, spatiotemporal segmenta-
tion strategy, and encoding quality. The user interface for the con-
figuration phase is illustrated in Figure 5.

Participants will next don a headset and view 360◦ video con-
tent delivered through VisualCloud. Each video playback session
will be segmented into three parts. In the first part, attendees will
view the video using their (potentially poorly-selected) configu-
ration parameters. Next, viewers will view video delivered using
expert-selected parameters. Finally, viewers will view video deliv-
ered using a 2D streaming approach. As illustrated in Figure 6, par-
ticipants will be able to observe the bandwidth consumed by each
method in real-time, and will be invited to contrast the fidelity of
each delivery strategy. Bystanders will be able to view the content
delivered to users and bandwidth totals on a separate monitor.

VisualCloud will operate the server-side components of the
demonstration in the Amazon EC2 cloud; a local server will be
available as a backup should on-site bandwidth be too low to ade-
quately support cloud-based delivery. Headsets will be available as
part of the demonstration; however, when a user has a mobile de-

vice with appropriately advanced hardware, he or she may elect to
use that as an alternative by placing it inside a Google cardboard [6]
viewer supplied as part of the demonstration.

5. RELATED WORK
Current array database systems [9, 4] are oriented toward data

retrieval and analytics and are ill-suited for high-performance real-
time streaming. Additionally, array-oriented database systems lack
native support for modern video codecs (e.g., [8]) and cannot na-
tively take advantage of the potential optimizations that may be
derived through their use.

Some previous systems have explored prediction, prefetching,
and speculative execution in a virtual reality context [7, 5]; how-
ever, these systems target artificial environments such as those
found in games. Other data exploration systems have explored
the dynamic prefetching of tiles in a two-dimensional context [3].
Finally, VisualCloud takes advantage of prior work involving
bandwidth-reduction techniques for adaptive 360◦ videos [13].

6. CONCLUSION
In this demonstration, we introduce the VisualCloud system.

By representing VR content as a multidimensional array and per-
forming motion prediction, VisualCloud delivers content using less
bandwidth, scales to many concurrent connection, and requires less
decoding power on client devices. In this demonstration, attendees
will observe VisualCloud, tune its parameters, and contrast its vi-
sual fidelity with traditional video streaming techniques.
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