
PEEX: Extracting Probabilistic Events from RFID Data

Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu
Department of Computer Science and Engineering

University of Washington, Seattle, WA
{nodira,magda,suciu}@cs.washington.edu

Abstract

Radio-Frequency Identification (RFID) technology is in-
creasingly being used to support various industrial and
ubiquitous computing applications. Although this tech-
nology holds the promise to facilitate many of our every
day activities, the noisy and low-level data produced by
RFID readers today is extremely difficult to use or compre-
hend in most but the simplest settings. In this paper, we
present PEEX, a system that enables applications to easily
define, extract, and manage meaningful probabilistic high-
level events from low-level RFID data. By using a declara-
tive query language, the system simplifies definitions of new
events. By using probabilities, the system copes with the
noise and errors in the data and the inherent ambiguity in
the event extraction. We have built PEEX as a layer on
top of a traditional RDBMS, thus enabling applications not
only to detect events but also manage them further as neces-
sary. Through experiments with RFID traces collected on a
real, building-wide RFID deployment, we demonstrate the
performance and practicality of PEEX.

1. Introduction
In the past several years, Radio Frequency Identification

(RFID) technology has become an increasingly popular so-
lution for tagging and wireless identification [34]. Unlike
other location systems that tag objects with expensive de-
vices [27, 35], RFID-based systems can rely on inexpen-
sive, passive RFID tags (the typical cost of a tag is approx-
imately 20 to 40 cents [29]). Low-cost tags make it fea-
sible to track large numbers of people and objects, open-
ing the door to many new types of applications. Currently,
the main use of RFID technology is in the supply-chain
management domain [31]. However, successes of RFID in
industrial settings are leading many to consider pervasive
deployments of this technology, where objects and people
carry tags and RFID readers are scattered through the envi-
ronment. Such deployments hold the promise of enabling
many user-oriented applications [3, 32] from simple asset

(a) In-laboratory read-rates (b) Practical read-rates

Figure 1. Read-rates measured for various objects

tracking and alerting services, to sophisticated studies of so-
cial phenomena and user behavior.

Exploiting data produced by RFID readers, however,
presents significant challenges. The data needs not only to
be stored in a database and properly managed [19], but it
must also be transformed in sophisticated ways [38]. In-
deed, RFID readers produce streams of low-level observa-
tions of the form: “Tag 344 was last seen at antenna 647
at 3:20pm”. This low-level data must be transformed into
high-level events meaningful to applications, such as “Al-
ice entered the conference room at 3:20pm”, or “Alice’s
keys appear to be missing from her purse”. In theory, high-
level events are simply spatio-temporal combinations of raw
RFID tag sightings or other previously defined events. In
practice, however, two important issues make the mapping
from RFID data to high-level events challenging.

The first issue is reliability. RFID antennas frequently
fail to read tags in their vicinity [13, 20] and nearby anten-
nas can detect the same tags at the same time [20]. Fig-
ure 1 illustrates some sample read-rates that we observed
in laboratory experiments and in a 2-week pilot study on
a small deployment [36]. As the figure shows, failures are
frequent, especially on metal objects, or when participants
move around freely. Such data errors can cause complex
events to go undetected.

The second issue in transforming raw observations into
high-level events is ambiguity. A combination of low-level
tag reads may not correspond uniquely to a single high-
level event. This is especially true in pervasive deployments
where detecting a person at a sequence of locations may in-
dicate that they are performing one of several possible ac-
tivities, e.g., Bob is printing a paper or sending a fax. Am-
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biguity can make it impossible to determine which from a
set of high-level events actually occurred.

Most previous schemes for RFID event detection ignore
ambiguity and input data errors [38]. We show that ambigu-
ity and data errors make deterministic event extraction un-
workable, leading to event recalls near zero (Section 5.2.1,
Figure 6). Schemes that do consider data errors propose to
clean the data deterministically before or while processing
it [20, 21, 28, 33]. Deterministic cleaning can indeed im-
prove data quality, but rarely cleans away all errors. For
example, if a set of keys appear to be in two offices at the
same time, it is not always clear which location is correct.

Given the limitations of the deterministic data cleaning
and event detection techniques, to enable useful extraction
of high-level events in face of uncertainty in the observed
data, we propose to use a probabilistic model. More specif-
ically, our contributions are as follows:
1. Probabilistic event model. We propose a probabilistic
model for high-level events extracted from RFID data. We
also propose an extended event language that supports our
probabilistic model in a natural way (Section 3).
2. Probabilistic event extraction system. We propose a
simple technique for extracting probabilistic events by exe-
cuting SQL queries over a relational database management
system (RDBMS). To handle ambiguity and data errors,
our approach relies on two key techniques: (1) confidence
tables that capture the historical probability that different
combinations of tag sightings correspond to a high-level
event and (2) partial events, where the system only needs
to detect subsets of all specified tag sightings to infer that
a higher-level event occurred. We implement this approach
in a system called Probabilistic Event EXtractor (PEEX),
which we present in Section 4.
3. Experiments with real RFID data traces. Finally, we
demonstrate the power and practicality of PEEX through
experiments with data collected from a real building-wide
RFID deployment (Section 5). We show that a probabilistic
approach to event detection significantly improves detection
rates compared with deterministic techniques. For example,
we show in Section 5.2.1 that PEEX can provide a 93% re-
call for a non-trivial STARTED-MEETING event over the 18% re-
call of a deterministic approach. Additionally, since proba-
bilities are associated with detected events, applications can
choose their desired trade-off between detection rate and
precision by considering only events above some probabil-
ity threshold. We also show that our RDBMS-based event
detection approach is sufficiently fast to be practical for
most ubiquitous computing applications. For example, in
Section 5.2.5, we show that the STARTED-MEETING event can
be detected in near real-time on top of our collected data
which consists of more than ten thousand raw events.

Since our system is based on an RDBMS and the output
it produces follows standard probabilistic models, existing
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Figure 2. RFID deployment and errors

probabilistic databases [6, 7, 37, 8] could be used to execute
queries over our system’s output and further manage the ex-
tracted events. However, we restrict the focus of this paper
on the actual event extraction from RFID data. We do not
address query execution over the detected events.

Overall, we show that the uncertainty of a monitored
environment cannot be cleaned away and hidden from ap-
plications. Instead, modeling and incorporating that uncer-
tainty in the form of probabilistic rather than deterministic
events is necessary, especially for pervasive RFID deploy-
ments and applications.

2. Application Scenarios

To experiment with RFID technology and applications,
we have deployed 150 RFID antennas in all hallways in
our department building as illustrated in Figure 2(a). RFID
readers located in nearby offices poll antennas continuously
and send information about detected tags to a back-end
database. In our setting, the read-range for each antenna is
approximately 2 to 3 meters. We use our RFID deployment
as the motivating scenario throughout the paper.

Given such a deployment, a simple yet useful applica-
tion consists in tagging people’s belongings and depart-
mental assets and allowing owners to track the movements
of their objects over time. Another application, which is
the one we use throughout the paper, simply enables users
to determine the current location of co-workers. 1 In
most cases, users do not want to see low-level informa-
tion such as “Alice was last seen at antenna 37 at 11:56am”
but higher level information such as STARTED-MEETING(Alice,

Bob, Rm303, 11.57am). To enable such a scenario, we need
a system to transform the imprecise, low-level sensor data
into high-level events meaningful to applications. In this ex-
ample, the meeting event occurs when Alice and Bob both
walk into room 303 together, each with their laptop. Such a
high-level event is likely to be constructed from lower-level
events that indicate that a person has entered a room, that
their laptop has entered the same room and that they have
not left the room before the other attendee arrived. We may
be even more certain of our conclusion if this pair has a
history of meeting together in room 303.

1Although paramount, privacy issues are outside the scope of the paper.
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This scenario illustrates the main challenges we face. (1)
Ambiguity: with pervasive applications, the same set of
low-level observations can correspond to multiple distinct
high-level events. For example, it is never certain that Al-
ice and Bob are having a meeting together, Alice may have
stopped by to invite Bob to lunch or chat over coffee. (2)
Errors: as illustrated in Figure 1, RFID data contains sig-
nificant amounts of false negatives. In general, error rates
depend on the equipment used, the object material and the
orientation of tags and antennas [36]. RFID data may also
contain false positives where nearby antennas detect the
same tag at the same time as illustrated in Figure 2(b). False
positive rates depend primarily on antenna deployment. In
our case, for example, antennas cover slightly overlapping
spaces, causing some false positives.

The high-level events that can be extracted from RFID
data are thus probabilistic rather than deterministic in na-
ture. The uncertainty propagates as events are aggregated
into even higher-level events. For example, if the system
has only limited confidence in the underlying ENTERED-ROOM

events, the confidence in the STARTED-MEETING event will be
accordingly lower. In the following sections, we present
PEEX, our probabilistic event extraction system, and show
how it addresses the above challenges.

3. Probabilistic Event Model and Language

In this section, we present PEEX’s probabilistic model
and probabilistic event language.

3.1. Probabilistic Event Model

The PEEX probabilistic event model borrows elements
from the event model proposed by Demers et al. [10] and
from recent probabilistic data models [6, 18, 37].

3.1.1. Deterministic Events

Although PEEX handles probabilistic events, we first define
a deterministic event which is a named tuple of the form: s

EventType(evID, A1, . . . , Ak, time)

where EventType is the type name of that event: PEEX stores
all events of this type in a relation called EventType. evID is
a system-generated event key, A1, . . . , Ak are the categor-
ical attributes of the event, and time is a temporal attribute
indicating the time when the event occurred. Unlike [10],
we assume that events are instantaneous: i.e., their duration
is always one time-unit.2 Examples of events are:

SIGHTING(evID, tagID, antID, time)
ENTERED-ROOM(evID, tagID, roomID, time),
LEFT-ROOM(evID, tagID, roomID, time)
GOT-COFFEE(evID, tagID, time)
STARTED-MEETING(evID, tagID1, tagID2, roomID, time)
FINISHED-MEETING(evID, tagID1, tagID2, roomID, time)

2Extension to long-duration events is left for future work.

For example SIGHTING(8228,tag779,ant32,202) represents
the event that antenna 32 picked up a reading of tag779 at
time 202; the system has assigned the unique event identi-
fier 8228. In PEEX, we assume that RFID readers produce
continuous streams of RFID tag readings. These readings
are appended to base relation SIGHTING and stored persis-
tently before being processed.

A primitive event in PEEX thus corresponds to a tu-
ple in the SIGHTING relation. By contrast, an event like
ENTERED-ROOM(5394, tag404, room555, 300) is a composite
event, in the sense that it was derived from other more ba-
sic events: it represents the fact that tag 404 is believed to
have entered room 555 at time 300, and may be inferred by
the system from, say, successive antenna readings of the tag
404 along the hallway leading to room 555.

Note that tagID plays no special role among an event’s
attributes, and events may refer to more than one tag (e.g.,
STARTED-MEETING above), or none at all. This is important for
complex applications that need to manage complex com-
posite events relating multiple people and/or objects.

3.1.2. Probabilistic Events

All events, including those in SIGHTING are probabilistic:
they have an associated probability that represents PEEX’s
confidence in the occurrence of the event. More formally, a
probabilistic event consists of a type name, a key, and a joint
probability distribution on all its other attributes. The distri-
bution is specified separately for the time attribute and for
the categorical attributes. For the categorical attributes, it is
specified by a direct enumeration of their joint probability
distribution. For an illustration, consider the probabilistic
event ENTERED-ROOM(evID, tagID, room, time, prob) (a prob

attribute has now been added). One event 5394 is now de-
fined as follows:

ENTERED-ROOM(5394, tag404, room555, 300, 0.4)
ENTERED-ROOM(5394, tag404, room505, 300, 0.3)
ENTERED-ROOM(5394, tag404, room501, 300, 0.1)

Event 5394 consists now of a probability distribution on the
three rooms that the system believes that tag 404 may have
entered. Note that their probabilities add up to less than one,
because the system leaves open the possibility that the tag
moved to another location. In this illustration one attribute
(room) was uncertain; if more attributes are uncertain, then
we simply enumerate all their combinations of values (i.e.,
the entire joint distribution), for example if tag and room are
uncertain then we have tuples of the form:

ENTERED-ROOM(5394,tag404,room505,300,0.4)
ENTERED-ROOM(5394,tag404,room561,300,0.2)
ENTERED-ROOM(5394,tag111,room561,300,0.3)

In addition to uncertainty about categorical event at-
tributes, the exact time when an event occurs is often un-
certain as well. As a simple example, we ran an experi-
ment where a person walked by two antennas placed a few
meters apart in a hallway. The travel time, as measured
by the antennas tag reads, varied between 0.7 and 2.5 sec-
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onds depending on the experimenter’s speed. If the first an-
tenna was located a few meters from an office door, and the
second antenna was the door, then, in our experiment, the
ENTERED-ROOM event would occur between 0.7 and 2.5 sec-
onds after the last antenna sighting.

In PEEX, we capture this uncertainty by specifying the
time attribute independently with a probability distribution
function in the form of a histogram. Each bucket corre-
sponds to a small time-window and contains the probability
that the event occurs within that window. The size of the
buckets and the number of buckets to use for each event are
set by the administrator. Assuming that we use only three
five-second buckets, the ENTERED-ROOM event for tagID 404
and room 505 could be represented as:

ENTERED-ROOM(5394,tag404,room505,295,0.05)
ENTERED-ROOM(5394,tag404,room505,300,0.30)
ENTERED-ROOM(5394,tag404,room505,305,0.05)

In general, we expect administrators to use a small num-
ber of course-grain buckets (e.g., 30 or 60 second buckets)
and most events to fall within a single or a few buckets. For
example, ENTERED-ROOM events would almost always occur
within 30 seconds of the last antenna sighting.

For simplicity, all primitive SIGHTING events generated by
the RFID infrastructure have a probability of 1.0 and a de-
terministic time.

3.2. Probabilistic Event Language

In PEEX, users define composite probabilistic events
from lower level primitive events using a declarative query
language with a single construct:

FORALL I1, I2, ..., In

[ CTABLE C ]
WHERE Condition
CREATE EVENT E
SET Assignments

The arguments of the FORALL clause, I1, . . ., In, corre-
spond to primitive events, to previously defined compos-
ite events, and/or to regular database tables. They have the
same syntax as a SQL FOR clause and are possibly preceded
by a negation sign ! as explained in the next section.

E is the type name of the composite event. The SET

clause defines the attributes (categorical and temporal) of
the new event. A trivial illustration is given in Figure 3(a).
Given raw events SIGHTING(8778, tag432, ant035, 420) and
SIGHTING(8778, tag432, ant036, 425) with no SIGHTING for
tag432 in between, the system generates a composite event
ENTERED-ROOM(238, tag432, Room555, 425).

3.2.1. Temporal Aspects of Events

Because our event definition language is primarily based
on SQL, we can borrow (and extend) the probabilistic data
model described in [6, 18, 37].

Our language also includes two powerful constructs for
predicates on event ordering, which we borrow from [4, 38].

The first is SEQ(I1, I2, . . ., In). This is a predicate stat-
ing that the events I1,I2, . . ., In come in this order: i.e.,
(I1.time < I2.time) ∧ (I2.time < I3.time) ∧ . . . ∧ (In−1.time <

In.time). The second construct is the bang ! in front of
a variable in the FORALL clause, which specifies the non-
occurrence of the event. For example, the event definition
in Figure 3(a) indicates that S2 occurs after S1 and that event
S should NOT exist.

3.2.2. Expressing Probabilistic Events

Figure 3(a) defines a deterministic event: i.e., its probability
is 1.0 (since there is no explicit clause indicating otherwise
and the probability of the underlying SIGHTING events is
always 1.0), and its time attribute is simply equal to the time
of the tag sighting at antenna 36.

Typically, however, a given combination of RFID tag
readings can define a composite event only with limited
certainty. As an example, in our deployment, antennas are
placed two to three offices apart. When a user stops be-
tween a pair of antennas, the user may thus be in one of
several offices. Furthermore, the visit to a room may corre-
spond to different high-level tasks (e.g., printing a paper or
faxing some documents).

One way to capture such ambiguity, is for PEEX’s lan-
guage to provide a CONF modifier for the SET clause. This
modifier lets a user state the probability that a combina-
tion of observations matches a high-level event. Consider
the example in Figure 3(b), which defines the composite
event ENTERED-ROOM. We assume that two consecutive read-
ings of the same tag by antennas 35 and 36 signal that the
tag moves towards a cluster of three rooms, most likely to-
wards room 555, but maybe towards 505 or 501. These
alternatives are captured in the event definition by assign-
ing different values to the room attribute, with different
confidences. Such choices define a joint probability dis-
tribution on the room attribute of the new event. Sim-
ilarly, users could define joint distributions on multiple
attributes: e.g., SET (A1 := v1, A2 = v2 CONFIDENCE c | A1

:= v1’, A2 = v2’ CONFIDENCE c’), assigns probability c to
values (v1,v2) and probability c’ to (v1’,v2’).

In general, however, event confidences may not be con-
stant; they may depend on different attributes of an event or
may even be correlated with some attributes. For example,
certain people are more likely to go to room 501 (e.g., the
owner of that office) than to room 555 (say, a conference
room). To enable the specification of such correlations, we
propose to use separate confidence tables. A confidence ta-
ble is any table in the relational database, but is typically a
table with a schema of the form: CONF TABLE(A1, A2, ...,

An, time-bucket, conf).
Figure 3(c) illustrates the approach, by showing the spec-

ification of the ENTERED-ROOM event with a confidence value
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FORALL SIGHTING S1, !SIGHTING S,
SIGHTING S2

WHERE SEQ(S1, S, S2)
AND S1.antID = ’ant035’
AND S2.antID = ’ant036’
AND S1.tagID = S2.tagID
AND S.tagID = S1.tagID

CREATE EVENT ENTERED-ROOM E
SET E.tagID = S1.tagID,

E.room = ’Room555’,
E.time = S2.time;

FORALL SIGHTING S1, !SIGHTING S,
SIGHTING S2

WHERE SEQ(S1, S, S2)
AND S1.antID = ’ant035’
AND S2.antID = ’ant036’
AND S1.tagID = S2.tagID
AND S.tagID = S1.tagID

CREATE EVENT ENTERED-ROOM E
SET E.tagID = S1.tagID,

( E.room = ’room555’ CONF 0.4|
E.room = ’room505’ CONF 0.3|
E.room = ’room501’ CONF 0.1),

E.time = S2.time;

FORALL SIGHTING S1, !SIGHTING S,
SIGHTING S2

CTABLE FLOOR5-STATS C
WHERE SEQ(S1, S, S2)

AND S1.antID = ’ant035’
AND S2.antID = ’ant036’
AND S1.tagID = S2.tagID
AND S.tagID = S1.tagID
AND S1.tagID = C.tagID

CREATE EVENT ENTERED-ROOM E
SET E.tagID = S1.tagID,

E.room = C.room CONF C.conf
E.time = S2.time + C.time-bucket;

(a) Deterministic (b) No confidence table (c) Using a confidence table

Figure 3. Examples of event definitions for ENTERED-ROOM
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Figure 4. PEEX software architecture

computed from a FLOOR5-STATS confidence table, which ap-
pears in the WHERE clause. The schema of FLOOR5-STATS

is simply (tagID, room, time-bucket, conf): i.e., the con-
fidence depends on the room number and the tag identifier.
Note that the time when the event occurred is now also com-
puted from the confidence table.

An important consequence of using confidence tables is
that the system is now able to learn event probabilities and
event times as we discuss in Section 4.2.

4. PEEX System
We have designed PEEX as a layer on top of a traditional

RDBMS (Microsoft SQL Server [24] in our prototype im-
plementation). This design enables us to demonstrate the
benefits of a probabilistic RFID DBMS, while leveraging
all the features of an existing RDBMS. As illustrated in Fig-
ure 4, the core components of PEEX are the Event Detector,
the Confidence Learner and the Partial Events Generator.
We now describe these three components.

4.1. Event Detector
The Event Detector extracts events specified by the event

definitions. All events (primitive and composite) are stored
persistently in the RFID Data Store, using one relation per
event type. Primitive events are inserted into the store when
they arrive. The Event Detector runs periodically. For each
newly detected event, it inserts a tuple into the appropriate
relation and computes its probability appropriately.

[01] SELECT S1.tagID, ’Rm555’, S2.time
[02] FROM SIGHTING S1, SIGHTING S2
[03] WHERE S1.time < S2.time
[04] AND S1.antID = ’ant035’
[05] AND S2.antID = ’ant036’
[06] AND S1.tagID = S2.tagID
[07] AND NOT EXISTS (
[08] SELECT *
[09] FROM SIGHTING S
[10] WHERE S.time > S1.time
[11] AND S.time < S2.time
[12] AND S.tagID=S1.tagID)
[13] AND S2.timestamp>now()-delta

Figure 5. SQL for detecting ENTERED-ROOM events.

4.1.1. Extracting Events

To leverage the underlying DBMS, the Event Detector
transforms event definitions into SQL queries that it exe-
cutes each time it runs. Interestingly, we managed to keep
this transformation relatively straightforward in spite of the
sophistication of our language.

For deterministic events, the transformation requires
three key changes to event definitions. First, all negations
that appear in the FORALL clause are replaced with NOT EXISTS

clauses. Second, all SEQ(I1, I2,..) constructs are trans-
formed into explicit predicates on input event timestamps.
As an example, Figure 5 shows the SQL query for the event
from Figure 3(a).

The third and final rewrite has to do with the contin-
uous nature of the data and event detection process. To
avoid detecting the same events every time it executes,
the Event Detector transforms event definitions into incre-
mental queries. These queries look-up only combinations
of low-level events where at least one event occurred in
the time-window ∆ since the Event Detector’s last execu-
tion. PEEX uses the SEQ construct and all predicates on
event times to compute the expected order of the low-level
events. If the event definition imposes only a partial order
on the lower-level events, PEEX specifies that the maximum
timestamp of the events should be within the most recent
time window. Line 13 in Figure 5 illustrates this transfor-
mation for the case where all events are ordered.

To maintain constant performance, PEEX also requires
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that all lower-level events occur within some bounded,
though much longer, time window. (e.g., the last week
worth of RFID readings). This constraint simply ensures
that the Event Detector always operates on a small data set.

With the above technique, the amount of rewriting is
non-trivial. Our current implementation restricts it by con-
straining event definitions to at most one SEQ construct.
Other restrictions include that PEEX disallows consecutive
negations in a sequence operator, and allows only one event
in the CREATE EVENT clause.

There are two major changes that we make in order to de-
tect probabilistic events. The first is to replace the not-exists
clauses with anti-semi-joins (which in turn requires us to al-
ter other joins too). This allows us to detect, for example, an
Entered-Room event, E, that consists of two Sighting events
e1 and e2 even if there exists some e′′ in between the two
with a non-zero probability. Of course, the probability of E
is lower than had the probability of e′′ been zero. The sec-
ond change is due to the addition of confidence tables into
event definitions when defining probabilistic events. We
need to add the confidence table to the join.

Finally, to avoid the proliferation of very low-probability
events, PEEX generates only events that have a confidence
higher than some ε threshold defined by the administrator.

4.1.2. Assigning Probabilities to Composite Events

Once it detects an event, the Event Detector must also as-
sign it the appropriate probability. This problem is challeng-
ing because the probability of a composite event must take
into account the probabilities of the underlying, lower-level
events, which can be correlated. For example, a LUNCH event
could be defined as the sequence of an IMPROMPTU-MEETING

event between two people followed by a LEAVING-TOGETHER

event. Let’s denote with p1 and p2 the probabilities of these
lower-level events. A straightforward approach would be to
assume that the events are independent and return p1p2 as
the probability of the composite event.

It may happen, however, that the lower-level events
are correlated because they are defined in terms of the
same (probabilistic) event. For example, suppose that the
IMPROMPTU-MEETING event comprises two LEFT-OFFICE events
followed by an ENCOUNTER event (hence p1 = pApBpC).
Suppose now that the LEAVING-TOGETHER event depends on an
ENCOUNTER event followed by two LEFT-BUILDING events (with
p2 = pCpDpE). It may happen that the two events are cor-
related because they depend on the same ENCOUNTER event
and the probability that they both happen is no longer p1p2.

To properly handle these correlations, PEEX rewrites
the definition of each new event in terms of its lower-level
events: i.e., it recursively inlines the definitions of all un-
derlying probabilistic events. In the example, such a rewrite
leads to a new event definition that uses the ENCOUNTER event

twice, which PEEX minimizes. PEEX now computes the
correct probability pApBpCpDpE (here pC , the probability
of the ENCOUNTER event, occurs only once), which is correct.
At the end of the process, the probability that all lower-level
events occurred is multiplied by the value in the confidence
clause of the new event.

4.2. Confidence Learner

As we discussed in Section 3.2.2, the schema of a con-
fidence table takes the form: CONF TABLE(A1, A2, ..., An,

time-bucket, conf). If CONF TABLE serves to generate events
of type E, each entry in CONF TABLE indicates the probability,
conf, that given the parameters A1 through An, E occurs
within the time bucket. Time buckets are defined relative to
the time of the most recent lower-level event. For example,
a confidence table may indicate that there is a 20% chance
user 444 enters room 505 within thirty seconds of having
been sighted at antenna Ant35 followed by Ant36.

To automatically populate these confidence tables,
PEEX uses annotated historical data that includes input
primitive events and output composite events. Primitive
events are generated by RFID readers. To obtain histori-
cal composite events, uses must annotate, over some time
period, their movements through the building with the cor-
responding activities. To do so, users typically associate
activity labels with the times when the activities occurred
(annotation precision affects event detection precision).

The confidence for an event is then determined by two
sets: the set of historical composite events that match the
event definition and the subset of those events that are also
associated with the appropriate label. The ratio of the
two sets, grouped by the appropriate attributes (including
time-bucket), gives the desired confidence value. For the
learning process to be accurate, PEEX must thus carefully
match event patterns with the appropriate event labels. To
do this, PEEX matches each pattern with the closest follow-
ing event label for the event of interest. If there is a real
correlation between the pattern and the label, many histori-
cal events occur clustered within one or a few time buckets,
yielding a high confidence. In contrast, if the association
is spurious, events appear scattered across a large number
of time buckets, each one with a probability below ε that
PEEX discards.

PEEX learns event confidences using RFID data from a
given time-period when the user issues the command: LEARN
[EventType] begin time, end time. If the EventType is omit-
ted, all declared confidence tables are updated. Since events
are specified declaratively, the same event specification can
be used both for the event definition and for learning. The
Confidence Learner rewrites event definitions into queries
using transformations similar to those used by the Event
Detector.
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4.3. Partial Event Generator

RFID errors, both false negatives (where readings are
missed) and false positives (where neighboring antennas
detect tags), dramatically impact applications that rely on
complex events, because error rates are amplified at each
level in the event hierarchy. To illustrate, consider the fol-
lowing STARTED-MEETING event
FORALL ENTERED-ROOM E1, ENTERED-ROOM E2, !LEFT-ROOM L,

ENTERED-ROOM E3, ENTERED-ROOM E4
WHERE SEQ(AND(E1, E2), L, AND(E3, E4))

AND ...
CREATE EVENT STARTED-MEETING E
SET E.tag1 = E1.tagID,

E.tag2 = E3.tagID,
E.room = E1.room,
E.time = max(E3.time, E4.time)

The composite event depends on four positive RFID
readings E1, E2, E3, E4, and one negative reading L. If each
event has an error rate of 15%, the STARTED-MEETING event has
an error rate of 56%. If three such composite events are now
needed to detect an even higher-level event, that event has
an error rate of 91%! Deterministic event detection is thus
unworkable in an error-prone environment.

We observe, however, that it is often possible to detect
composite events even when some errors occur. For exam-
ple, if only E1, E2, and E3 are detected, the system might
still be able to conclude that a STARTED-MEETING event oc-
curred, although with lower confidence.

PEEX captures this intuition through the use of partial
events. Given a definition of a composite event consisting of
n lower-level events (some may be negated), PEEX detects
the composite event as soon as some non-empty subset of
the n events occur (or do not occur). In our example, PEEX
still detects the STARTED-MEETING event even if up to three
of the events E1, E2, E3, E4 are missing and even if L is
present. Of course, the more errors occur, the lower the
confidence that the high-level event occurs.

To detect partial events, PEEX relies on the Partial Event
Generator. Given an event definition that depends on lower
level events E1, E2, ..., En, the Partial Event Generator
generates a partial event for each subset of events with
at least one positive event Ei and no consecutive negated
events Ej , Ej+1. The Partial Event Generator adds each
partial event to the system and from there on, these events
are handled like regular events, each with its own confi-
dence table. We analyze the performance of partial events
in Section 5.2.2.

5. Evaluation

In order to evaluate PEEX we collected data for one hour
with ten participants in our building-wide RFID deploy-
ment. Each participant had with them several tags including
their person, keys, laptop, and mug tags. Each was given a
schedule that consisted of the times for entering the build-
ing, attending meetings, taking lunch breaks and exiting the

building. Participants also took coffee breaks and trips to
the printer at their discretion. Overall, we collected 11585
SIGHTING events.

5.1. Methodology

We looked at the extraction of many events in our ex-
periments including those listed in Section 3. However,
for brevity we discuss only the ENTERED-ROOM, LEFT-ROOM, and
STARTED-MEETING events.

The ENTERED-ROOM event is defined as in Figure 3(c) with
one change. We replace the negated S from the definition
with a condition requiring that the two SIGHTING events oc-
cur within 30 seconds of one another and at adjacent an-
tennas. We make this alteration for simplicity’s sake as the
STARTED-MEETING event already demonstrates a negation. The
LEFT-ROOM event is defined with a single underlying SIGHTING

event, just to get a greater diversity of event definitions. The
STARTED-MEETING event is a simplified version of the defini-
tion in Section 4.3 without E2 and E4.

Participants labeled the times they traveled between
rooms and also the objects that they carried. This infor-
mation was sufficient for us to label all high level events.
We use the labeled data for the first half-hour to populate
confidence tables and the rest of the data to measure recall
and precision. Given a variable c, we say that a generated
event E correctly captures a labeled event E′ if E is within
c seconds of E′. The following equations measure recall
and precision using this definition.

Recall =
|{E ∈ S : ∃E1 ∈ T s.t. |E1.time − E.time| ≤ c}|

|{E ∈ S}|

Precision =
|{E ∈ T : ∃E1 ∈ S s.t. |E1.time − E.time| ≤ c}|

|{E ∈ T}|

where S is the set of labeled events and T is the set of events
generated by PEEX. We use c to cope with the varying de-
grees of inaccuracy in the labeled data. For example, in
the labeled Entered-Room data, the times people input
varied from immediately before entering the office to ten
seconds after entering. Henceforth, c is 60 seconds.

5.2. Results

We present our evaluation results in four parts. First,
we compare PEEX to a deterministic approach. Second,
we demonstrate the need for and the benefit of using par-
tial events for the ENTERED-ROOM event. Third, we show
the effect of using partial-events on a higher-level event
STARTED-MEETING. Finally, we study PEEX’s ability to detect
and generate events in near real-time.

5.2.1. Probabilistic vs. Deterministic Approach

Figure 6 shows the recall and precision achieved by PEEX
for STARTED-MEETING events. The results include probabilistic
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Figure 6. Detecting STARTED-MEETING events.

cleaning (see Section 5.2.4). For increasingly high confi-
dence thresholds (on the x-axis), the figure shows the corre-
sponding recall and precision (on the y-axis) for all events
detected with higher or equal probability.

We compare PEEX to a deterministic approach. There
are two possible deterministic approaches, to extract only
events that have occurred with certainty or to generate all
events that have any chance of having occurred. These ap-
proaches are equivalent to setting the probability threshold
to 1 and 0 respectively. It is clear that PEEX can provide
a higher recall than the first deterministic approach, from
0% to 93% (when the probability threshold is 0.05). PEEX
can also deliver higher precision than the second determin-
istic approach to applications that require it. Hence, unlike
a deterministic approach, because probabilities are associ-
ated with each event, PEEX allows applications to choose
their desired trade-off between recall and precision by con-
sidering only events above some probability threshold.

5.2.2. Partial Events

To evaluate the benefits of partial events, we take four def-
initions of the ENTERED-ROOM event, each with 1, 2, 3 or
4 SIGHTING events. For a definition containing x SIGHTING

events, the ENTERED-ROOM event is generated when a tag is
sighted at x adjacent antennas. The confidence table is
also altered to the form C(ant1, ant2, ..., antx, tagID,

time-bucket, conf). Figure 7(a) and (b) show the recall
and precision respectively for these four definitions. As ex-
pected, without partial events, as x increases, the recall of
PEEX decreases due to false negatives (see Section 4.3).
The precision increases because the longer the sequence of
tag sightings, the more confident we can be that the person
is indeed entering a specific office.

For x ≥ 2, with partial events (Figure 7(c) and (d))
the recall increases as there are now more combinations of
SIGHTING events that can trigger an ENTERED-ROOM event. Thus
PEEX has a higher tolerance to missed readings. For ex-
ample, for x = 4 and probability threshold 0.5 the recall
increases from 0.8% to 27%. Again, however, the preci-
sion drops due to the lower confidence events that PEEX
now generates. The drop in precision, however, is small
in comparison to the increase in recall. At the 0.5 thresh-
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Figure 7. Effect of partial events on recall/precision for
the ENTERED-ROOM event where the event is defined on
a varying number underlying SIGHTING events
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Figure 8. Effect of partial events on recall/precision
for the STARTED-MEETING event.

old, precision drops only to 88%. Note that with partial
events, precision and recall are similar independent of x be-
cause our rooms were placed unambiguously on the cor-
ridor. More complex room layouts, or higher-level events
(e.g.STARTED-MEETING must be defined in terms of multiple
base events, otherwise they result in low precision.

5.2.3. Higher-level Events

As discussed in Section 4.3, higher-level events are prone to
lower recalls due to the error rate amplifying at each level
of the event hierarchy. Thus, we also explore the benefits
of partial events for the higher-level STARTED-MEETING event
(Figure 8). In this experiment, ENTERED-ROOM events are de-
fined as a sequence of two SIGHTING events. We need not
rewrite the STARTED-MEETING event in terms of SIGHTING events
because the underlying LEFT-ROOM and ENTERED-ROOM events
can never be correlated.

As the figure shows, partial events offer a higher recall.
For example, for probability threshold 0.25 there is about
a seven-fold increase in recall. Of course, there is also a
decrease in precision. In our example above, the decrease is
under two-fold.
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Figure 9. Effect of data cleaning with only one con-
straint for the Entered-Room event.

Event Without With
ENTERED-ROOM 8 msec 110 msec
STARTED-MEETING 3 msec 110 msec

Table 1. Running times of PEEX with and without par-
tial events

5.2.4. Cleaning

In previous work [23], we looked at cleaning sensor data
probabilistically through the use of integrity constraints. In
this section, we show that the two techniques are comple-
mentary and can be integrated to deliver an improved event
detection performance. Figure 9 shows the result of apply-
ing a single cleaning constraint on ENTERED-ROOM events
after they have been detected by PEEX with the use of par-
tial events. The cleaning constraint states that if a person’s
keys enter an office, then the person also probably enters
the office. We learn this constraint and its degree of accu-
racy from the training data for all pairs of tags owned by
the same person. The results show that probabilistic data
cleaning significantly improves recall: e.g., for probability
threshold 0.05 the recall increases from 0.6 to 0.94 while
precision drops only from 0.75 to 0.66. We plan to address
the full integration of these two techniques in future work.

5.2.5. PEEX Performance

PEEX operates over a sliding window (5 seconds in our ex-
periment). Every time it runs, PEEX detects events that oc-
curred since its last execution. Our dataset contains a total
of 11585 SIGHTING events. Although this is a rate of only
16 new SIGHTING events per time-window, one must remem-
ber that older SIGHTING events also participate in the detec-
tion of composite events: event detection queries run over
a much larger time window, the entire database in our ex-
periment, (see Section 4.1). PEEX simply requires that the
most recent lower-level event occurs within the current in-
terval. There were also a total of 792 ENTERED-ROOM events
and 56 STARTED-MEETING events.

In order to determine whether PEEX is able to run in
near real-time, we measure the average time it takes to de-
tect events within a five second window. Table 1 shows the
results for ENTERED-ROOM and STARTED-MEETING events. In this
experiment, we do not do any cleaning, but the table shows
results both with and without partial events.

Since the time for detection is significantly less than five
seconds for each event, we conclude that PEEX is easily
able to run in near real-time for a deployment with tens of
users. Another important component is the learning pro-
cess. However, since this process is done offline, the per-
formance is less important. The running time for learning
the confidences were 1.58 and 1.71 seconds (without partial
events) and 4.02 and 13.67 seconds (with partial events).

6. Related Work

RFID data management. Several techniques have re-
cently been proposed for managing RFID data [17, 19].
These techniques, however, do not perform any event de-
tection. Instead, they focus on the complementary problem
of compactly representing, summarizing, and efficiently ac-
cessing RFID data.

Event detection. Event detection and processing has
previously been addressed in three main research areas: ac-
tive databases [1, 4, 16], publish-subscribe systems [10, 22],
and more recently complex event extraction from sensor
and RFID data [30, 38]. In all these systems, however, event
detection is deterministic: these approaches ignore event
ambiguity and possible input data errors.

The Data Furnace project at Berkeley [15] has simi-
lar goals to ours, but is investigating a complementary ap-
proach to the problem. Unlike our approach, the Data Fur-
nace project envisions using statistical learning techniques
to build, maintain, and run inferences over probabilistic
models that capture correlations across primitive events.

Previous work [25, 26] also proposed to build dynamic
Bayesian networks to infer human activities from RFID and
other sensor data. These systems can infer the most likely
activity that a user is performing. In contrast, PEEX extracts
the entire set of possible activities. Furthermore, because
PEEX is based on an RDBMS, it makes it easy for users to
query and manage the generated events.

Sensor and RFID data cleaning. Because our goal is to
detect events from erroneous and inaccurate RFID data, the
area of sensor and RFID data cleaning is complementary
to our work. Several techniques have recently been pro-
posed, where the user declaratively specifies either the al-
gorithms to clean the data [20, 14] or patterns over the data
with matching cleaning actions [28, 33]. In contrast, our
system operates directly on the inaccurate and dirty data,
without requiring the user to specify how to clean the data.

In previous work [23], we showed that integrity con-
straints can serve to clean sensor data probabilistically. As
we showed in Section 5.2.4, integrity constraints can easily
be integrated into PEEX and can help improve event recall
for only a small decrease in precision. Similarly, PEEX can
also leverage simple low-level cleaning mechanisms that
average measurements within a short time-window [21] and
across a group of sensors covering the same area [20].
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Chawathe et al. [5] propose to perform various infer-
ences on RFID data to recover from input data errors. The
envisioned techniques, however, are specific to the supply-
chain management domain. Such specific rules could be
represented in PEEX with integrity constraints.

Deshpande et al., [11, 12] propose to handle sensor data
errors and inaccuracies by building a probabilistic model of
the spatial and temporal correlations between values pro-
duced by different sensors. In contrast to PEEX, their goal
is to answer approximate queries directly over the low-level
data rather than extract high-level events from the data.

Probabilistic databases. They have a long history, start-
ing with Barbara et al., [2]. Our probabilistic events are
similar to maybe-or tuples in Trio [37], pc-tables in Green
and Tannen [18], or disjoint-independent tuples in Dalvi et
al., [6]. The query complexity on such databases has been
studied in [7, 6]. Probabilistic temporal databases have been
introduced in [9], but they use a semantics based on proba-
bility intervals, which is different from ours.

7. Conclusion

RFID technology enables many new types of applica-
tions, but requires the management of often erroneous data
and ambiguously defined high-level events. In this paper,
we presented a probabilistic model and language for high-
level events extracted from RFID data. We also presented
the design, implementation, and evaluation of PEEX, a data
management system that effectively extracts probabilistic
events from RFID data using three key techniques: it trans-
lates event definitions into SQL queries, it relies on con-
fidence tables to determine the probability of ambiguous
events, and it uses partial events to handle data errors.

Through experiments with data from a real RFID deploy-
ment, we showed that PEEX offers a better event recall than
deterministic techniques. Improved recall comes at the ex-
pense of precision, but PEEX provides applications a flexi-
ble trade-off between these two important properties: appli-
cations can simply ignore events with a probability below
their desired threshold.

Our long-term goal is to build an RFID data manage-
ment system, where a plethora of applications can extract,
manage, and possibly share high-level events. We view the
work in this paper as an important step towards this goal.
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