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1. Introduction 
  
This document contains the pre-meeting working group report on the database engine. 
We discuss important research problems in this area, what has already been 
accomplished, and what are important parts of these problems that we need to work on 
now. We do not expect to have identified all the important problems at this stage of the 
report generation process. This report will continue to get updated as the meeting 
progresses.  
 
The working group members should feel free to edit the text in this report directly. If you 
delete text, please don’t remove it entirely. Instead, use strike-through font so deleted 
text is easy to identify without tracking changes from prior versions. If you add text, 
please use a different color than black, so new text is easy to identify. Ideally, you 
should leave a comment as well, identifying yourself as the person behind the 
addition/subtraction, and any other justification (if you feel a justification is necessary). 
  
The report is divided into three sections, and these sections are divided into subsections 
corresponding to important subtopics of the database engine that came up in the 
pre-meeting survey: (1) Query engine (2) Transaction Processing (3) Data lakes  (4) 
Interoperability across multiple data systems and different type systems (engine 
aspects) (5) ML for Database Internals (6) Impact of hardware trends (7) Open-source. 
  
The first of these three sections discuss some important problems in each of these 
subtopics, and our accomplishments so far in solving these problems. The next section 
discusses what we, as a database community, should be doing to address these 
problems, and some of our research goals in this area. In the final section we discuss 
our relationship to other research communities. 
  
  
 
 
 



2. Research problems and our accomplishments 
thus far as a community 
  
Query engine 
------------ 
  
Over the years the performance of query engines has greatly improved. Techniques like 
main-memory optimized data structures, query compilation, just-in-time code gerated 
generated operators, and more efficient synchronization primitives have led to execution 
engines that are dramatically faster than previous generation systems. Techniques such 
as vectorized execution and query-optimized data structures have also been important 
factors in improving the performance of traditional SQL analytical systems. 
  
There are many hard problems remaining to be solved, especially as both data sizes 
and query complexities continue to grow. Our current systems are optimized for the 
simple primitives found in typical SQL queries. Identifying and optimizing for a new set 
of primitives required by complex analytics remains a challenge in the foreseeable 
future. Achieving high performance for these new set of primitives is the next important 
step. 
  

Transaction Processing 
------------ 
  
Transaction processing has been one of the greatest success stories of the database 
community. The community defined a set of useful guarantees (e.g., ACID) for arbitrary 
groups of accesses to different items in the database, and these guarantees have 
become widely relied upon by large numbers of application developers. The community 
has led the way in enabling large amounts of concurrency of transactions on 
single-processor, multi-processor systems, and distributed systems. Modern systems 
can achieve transactional throughput larger than the vast majority of real-world 
application requirements, and have continued to refine efficiency and adapt to changing 
hardware. 
  
One major issue that is present in modern systems is replication over large geographic 
distances. Such geographically replicated systems present significant challenges for 



maintaining consistency and latency given the fundamental limitations in the speed with 
which data can travel from one part of the world to another. Almost every new system 
that is developed trades off consistency and latency in a new and different way. There 
are dozens of different proposed "consistency levels", each one with a different set of 
guarantees. There is a significant need to unify around a more narrow narrower set of 
guarantees, as the community did with ACID and the small number of widely 
implemented isolation levels from a generation earlier. 
  
Another major issue is that the profile of an application developer has evolved over 
time. Database systems were originally designed for enterprise use cases for 
businesses that were large and somewhat "slow-moving". The assumption was that 
prior to application development, the developer had a good sense of how the data would 
be accessed, and had time to plan in advance, and carefully design a schema for that 
application. Modern application developers get a "minimum viable prototype" complete 
as soon as possible, and continuously refine an application after it is already live. There 
is an increasing need for database systems that evolve with an application. 
  
  
Data Lakes 
--------------- 
  
Database systems have long contained support for storing and accessing 
non-structured data, including videos, images, text, and nested data. However, many 
data scientists prefer to use scalable data processing platforms (such as Hadoop) 
instead of traditional database systems as a "data lake". The systems provide a 
scalable file system that can store arbitrary data across a large number of machines in a 
cluster, and encourage the use of targeted data formats for different data types, that 
facilitate efficient parallel processing of those data types. 
  
A major accomplishment of the database community has been the integration of parallel 
database processing techniques for the structured data stored in these data lake 
platforms. The original versions of Hadoop supported only MapReduce primitives, which 
lead to large amounts of inefficiency for processing and joining structured data. Projects 
such as Hive, HadoopDB, Impala, Pig, Presto, Scope, Flink and Spark brought many 
ideas from the database community to data lakes, including vectorized and 
column-oriented processing, operating on compressed data, broadcast and 
co-partitioned joins, declarative queries, and cost-based query optimization. 
  



Unfortunately, data lakes have accentuated the data cleaning, data integration, and 
data curation problems that have long been studied by the database community. We 
discuss these problems further in Section 3. 
  
ML for Databases and Autonomic Databases 
------------------------------------------------------------ 
 
There are two approaches to using ML to improve DBMSs. The first are methods that 
alter the runtime behavior of the DBMS’s internal components. Examples of such 
components include the query optimizer’s cost model or index data structures. These 
are written by the developers that built the DBMS and are controlled by rules or 
heuristics. Thus, instead of relying on these hardcoded rules, new research has 
explored ways to learn new policies based on the observed workload. The second 
category is on methods for automatically tuning the configuration of the system, such as 
the database’s physical design, knob configuration, and hardware resources. This is 
something that DBAs traditionally manage, although there is a long research history of 
tools to aid them with this process. The goal of this line of work is to relieve humans 
from many of these laborious tuning tasks, so that they can focus on other, more 
enriching activities. There is some overlap between these two categories, but the key 
difference is that the first is about tuning a single component of the system whereas the 
second is about taking a holistic view of the overall system.  
  
  
Interoperability across multiple data systems and different type systems (engine 
aspects) 
----------------------------------------------------------------------------------------- 
  
Interoperability is traditionally a difficult topic. In theory we have a SQL standard that 
allows for executing queries and exchanging data in a portable manner across systems. 
In practice, the standard is very weak, leaving many details as "implementation 
defined". As a consequence, only very simple queries work similarly across systems. 
Even for the relatively simple TPC-H queries, different systems produce slightly different 
results due to differences in type inference etc. This situation is largely caused by 
database vendors that want to fixate their existing behavior and have little interest in 
improving interoperability. 
  
There has been some momentum from the outside to change that, in particular from the 
"big data" and Hadoop world. Many systems can nowadays read file formats like 
RCFile, Orc, or Parquet, which makes data exchange more interoperable. However, 



there is some friction between the NF2 nature of some of these file formats and the 
relational world of most engines. 
  
Unfortunately, data exchange interoperability alone does not help with the query 
problem. Many existing applications use complex, often hand-crafted abstraction layers 
that use complex SQL constructs to try to minimize the differences between the 
systems. This often results in very complex queries that are both hard to optimize and 
hard to execute. 
 
  
Impact of hardware and networking trends 
------------------------- 
  
Query engines are always adopting adapting to hardware trends. Often, we try to make 
the best out of hardware designed for others, in particular gaming and ML. Ideally, we 
should try to guide hardware vendors to better suit our needs. Nonetheless, hardware 
development is hugely influential for engine design. For example, it is clear that today all 
systems must scale to a large number of cores. Traditional database systems have 
already spent much effort, and made much progress on multi-core processing, 
increasing locality, and minimizing NUMA effects. 
  
Changes in the storage hierarchy also have an important impact on database systems. 
SSDs are becoming very common as a storage medium, and their fast random I/O and 
asymmetric write behavior has an impact on systems design. The emerging non-volatile 
memory has the a chance to disrupt the storage hierarchy even further, as it promises 
persistent high-density storage with low latency. As this hardware is not widely available 
yet, and particularly since its price is not known yet, we cannot predict the effect on 
systems reliably. But there is a general trend towards heterogeneity in hardware, for 
example by using GPUs or FPGAs as co-processors, and some systems make use of 
that to offload processing tasks to specialized hardware. The memory hierarchy extends 
across machines, especially in cloud environments. 
  
For general purpose systems there is some tension between specialization and 
software complexity. Making use of every available hardware is difficult, in particular if 
the hardware is not widely used or if the complexity of using it is high. For GPUs there 
are some existing abstraction layers, but for FPGAs or other specialized hardware, the 
software is often closely tied to that particular hardware. 
 
Workload management 



 
The trends noted above about data lakes and heterogeneous workloads come with 
corresponding changes in user behaviour and expectations.  Clusters of machines that 
are viewed as shared resources for storing data and running these workloads are 
common, and increasingly, users expect workload management features such as fair 
allocation, managed queues with priorities and access controls, and good resource 
utilization while guaranteeing SLAs for important, time-critical parts of the workload. 
Meeting these goals while supporting the heterogeneity in the environment and 
workloads is challenging. 
  
Open source projects 
----------------------------- 
The database community has had large amounts of success with contributing and 
maintaining highly sophisticated database systems as open source projects. One great 
example of this is the PostgreSQL project which originated as a research project in the 
community and has been used as the core engine for dozens of subsequent 
commercial database systems and academic research projects. MySQL and its modular 
design with pluggable storage engines has also been very impactful. Many smaller 
systems targeted at specific components of a database system, such as BerkeleyDB 
and LevelDB have also made impact. For analytics, Apache Hadoop has become 
extremely popular and is used by tens of thousands of end users. One interesting trend 
is that systems that have started as a proprietary codebase have become open source 
after achieving maturity (such as the Greenplum analytical database system). 
  
While several good open source single machine transactional and analytical database 
systems exist, for distributed deployments, only systems targeting for analytical 
workloads are well covered. There does not yet exist a widely-used distributed, open 
source, transactional database system that enforces traditional ACID guarantees and 
strictly serializable isolation. While there does exist open source projects with 
contributions almost entirely from a single-vendor (such as CockroachDB, TiDB, 
YugaByte), we have yet to see a truly communal open source distributed transactional 
database engine. 
  
  
 
 
 



3. Action items for the database community 
  
Query engine 
------------ 
  
Research on query engines should continue in multiple dimensions. Scalability and 
complex analytics remain important challenges for the database community. Today's 
use cases include very large, complex, machine generated analytical queries, with 
dozens or even hundreds of relations. These use cases are very challenging both from 
an execution perspective and also for query optimization. Existing benchmarks do not 
cover these cases very well, because they concentrate on scaling data size instead of 
query complexity. It is clear that we could do much better here, both in the engines 
themselves and also with testing and benchmarking. In the research community, 
benchmarking should also be considered more critical; experiments are often very 
artificial, do not report variance or any effects of complex system interactions, and are 
sometimes hard to reproduce. A more realistic setup, including more realistic data and 
queries, would be helpful for the community at large. Finally, engines should go beyond 
pure SQL processing. The analytical processing capability capabilities of database 
engines are very powerful in many use cases, including "data science" applications, but 
offering just a SQL interface is not enough for most users. Having a richer interface for 
applications and users would be essential for bringing these scalable processing 
capabilities to a much wider usage. 
  

Transaction Processing 
------------ 
  
Traditional database systems are simply too rigid for modern applications developers. 
Today's applications  evolve rapidly --- the schema changes, data access patterns 
change, and the scale of access changes. Many application developers have turned to 
"NoSQL" systems that they believe are more flexible and able to adapt to their rapidly 
evolving applications.  Instead of pointing out the flaws of failing to plan ahead, the 
database community needs to be better attuned to the needs of the modern application 
developer and build highly evolvable systems. 
  
"Database systems" is not a required course in most university computer science 
majors. Furthermore, most application developers do not have a bachelor degree in 



computer science. As a result, the vast majority of database system users have no 
formal training in database systems. Over time, database system users are becoming 
increasingly less sophisticated. There is thus a need for database systems to become 
easier to use and more robust to incorrect or suboptimal usage. Hosted database 
systems in the cloud have reduced complexity for the application developer, but 
database performance is still very much susceptible to deterioration in the presence of  
unsophisticated application developers.  
  
It is tempting to state that improving transaction throughput should be a non-goal of the 
database community, given the extremely high throughputs attainable by modern 
systems. Although it is true that it is very hard to find an application that requires more 
throughput than available on a modern, scalable database system, we still predict that in 
the future, greater throughput will be needed. In today's applications, transactions are 
usually initiated by humans that and can only transact at the speed a human can act. 
Tomorrow's applications may have machine-initiated transactions, and need far greater 
throughput that than what today's transactional systems are able to produce. 
  
 
Data Lakes 
------------ 
  
Open source data lakes have made the cost of storing large amounts of data extremely 
small. As a result, a common use case is to dump data into a data lake without clearly 
defined curation processes, resulting in a level of chaos akin to a toddler's play room. 
There is a tremendous need for bringing order to this chaos, and there remains large 
amounts of "low-hanging fruit" where even imperfect solutions bring significant value. 
  
There is also a need for improved data provenance. Data lakes typically run a data 
processing algorithm on a large amount of data, and may produce a large amount of 
data as a result of this operation. This resulting data is stored back in the data lake and 
may be processed by subsequent operations. Although there do exist good solutions for 
tracking this provenance at a high level, much work remains to be performed and lower 
data granularities. 
 
Supporting interoperability across diverse engines operating on heterogeneous data 
remains challenging, especially with support for effectively sharing the underlying 
resources while meeting SLAs for key jobs. 
  



Data visualization is also an important problem in this area. Many users have trouble 
getting a grasp on what data exists in the data lake, what are the properties of different 
datasets, and how do processing operations affect these properties. As data gets larger, 
the challenging of getting started with understanding data increases rapidly, and 
traditional data search techniques are insufficient. 
  
  
ML for Databases and Autonomic Databases 
------------------------------------------------------------ 
The early work in this field is mostly about training deep neural networks (DNNs) to 
replace existing, human-built methods and components. For example, researchers have 
proposed using DNNs to replace histograms for estimating the distribution of a column’s 
values. Where this work will eventually go is toward how to build systems that use the 
information collected about databases, workloads, and the system itself to extract 
patterns that are non-obvious to humans. That means instead of just replacing existing 
histograms, the system could train a network that can identify weird correlations 
between tables/columns or incorporate growth trends in its predictions. Future DBMSs 
can use such “learned” models in conjunction with existing data structures rather than 
supplanting them entirely. This would allow it to do more than what is possible today 
with existing techniques. The challenge will be how to maintain these models in a 
dynamic environment while ensuring performance stability and avoiding regressions if 
the models go awry. 
 
  
  
Interoperability across multiple data systems and different type systems (engine 
aspects) 
----------------------------------------------------------------------------------------- 
  
Having a stronger SQL- (or in general: query-)standard would be highly desirable. In the 
programming languages world, nobody would accept that different compilers produce 
different results for everyday programs. Having a well-defined query semantics that 
systems agree upon would be incredibly useful for interoperability. Unfortunately, this 
standard is unlikely to happen. Existing system vendors do not want to change highly 
complex existing code, and fixing the very large and complex SQL standard is an 
overwhelming endeavor. The best chance to improve interoperability is to think beyond 
SQL. Users increasingly want to express their algorithms in some form of programming 
language, and they will need some well defined semantics for that. Getting the 



semantics standardized now with a robust standard will allow engines to expose 
interfaces with better interoperability. 
  
The challenge is to find a good compromise between expressiveness, ease of use, 
optimizability, and efficiency of execution. For example, some users may want to 
express their algorithms in Python, which has well defined semantics and is widely 
known, but is usually not declarative and not efficient to execute. The Spark 
DataFrames are more database-like, but still not nearly as declarative as SQL. Finding 
a good compromise is challenging, but if successful will be very impactful. 
  
Furthermore, it is instructive to think about the applications themselves as another "data 
system", with its own type system, access pattern, impedance mismatch, and so on. For 
users it would be highly desirable to blur the distinction between query engine and 
application, allowing easy and seamless access to the underlying database system. 
  
  
 
 
Impact of hardware trends 
---------------------------------- 
  
Adapting to changing hardware is a must, as systems design is often driven by what the 
hardware offers as functionality. One particular interesting ongoing trend is the 
development in SSD storage. SSDs have been around for quite a while, but in recent 
years both the price per GB and access latencies have improved dramatically. In fact, 
performance has improved so much that it is really a game changer compared to older 
SSDs. With modern high-speed SSDs, it becomes feasible to challenge a pure 
in-memory system, with a much better performance per dollar. These changes are very 
important because systems design for a low-latency SSD look quite different from a 
system aiming at rotating disks.  
 
An interesting alternative is the upcoming non-volatile memory that promises even 
better latency, albeit presumably at a higher price point. Systems aiming for NVM usage 
would again look quite different from systems aiming at SSDs. In the long run it might be 
beneficial to combine both, for example using fast SSDs for storage and NVM for 
logging and recovery, as that promises very good performance at a reasonable price. 
Similarly, thinking of remote storage sub-systems with fast networking offers promise. 
  
] 



The increasing heterogeneity in hardware is a significant challenge to systems design. 
Re-implementing large parts of the system whenever new hardware comes up is not a 
sustainable option, and different users will have different combinations of specialized 
hardware available. It is necessary to develop abstraction layers that allow for 
expressing high-level algorithms across these different devices in unified way, and that 
lead to efficient execution on whatever hardware is available. This is a hard problem 
because the different hardware devices behave very differently, and, e.g., a CPU and a 
GPU will favor different execution modes. But nevertheless such abstractions are 
necessary to cope with the upcoming zoo of specialized hardware. 
 
Section 4 discusses the relationship with the architecture community for affecting 
hardware development trends. 
  
 
Open source projects 
----------------------------- 
As mentioned above, there is a significant gap in community developed, open source, 
distributed ACID transactional database systems that support strictly serializable 
isolation. It is important that the community unify around an open source project in this 
space in the upcoming years. 
 

4. Relationship to other Research Communities 
  
Query engine 
------------ 
There are, or should be, close ties between query engines and the systems community. 
These groups are often looking at very similar problems, in particular concerning the 
interactions between the query engine, the hardware, and the operating system. In 
practice these ties could be stronger. There are a few people that are active in both 
communities, but still the communities are often separated. Also from a practical 
perspective it would be highly desirable to have better interaction between engines and 
operating systems. For example, it is very hard and inefficient to guarantee durability 
with today's file system abstractions, even though the underlying hardware could often 
provide that efficiently. But that functionality is not exposed by any mainstream OS. 
Another neighboring field is the programming languages community. When query 
engines go beyond SQL, programming languages become very important. Also, the 
programming languages community itself can benefit from a better interaction with 



databases: Mainstream programming languages like C++ currently work on exposing 
data parallelism in a natural way within the programming language itself. This is highly 
related to how database query languages work, and, as additional benefit, makes it 
easier to execute the program fragments within the query engine itself. 
  
  
Transaction Processing 
------------ 
  
The OSDI, SOSP, and NSDI communities have published more papers on 
geographically replicated database systems than the database community. Several 
highly influential papers published by those communities are not cited frequently enough 
by papers in SIGMOD or VLDB. The database community needs to do a better job of 
building on top of the pioneering work in this area from these other communities.   
  
Data Lakes 
------------ 
  
Many of the data lake challenges mentioned above concern interaction of humans with 
data. Collaboration and cross-pollination with the HCI community is important for the 
development of usable tools in this area. 
  
 
  
Interoperability across multiple data systems and different type systems (engine 
aspects) 
----------------------------------------------------------------------------------------- 
  
The programming languages community is working on very similar problems, in 
particular for data parallel processing. There are people that are active in both 
communities, for example the DBPL workshop has been ongoing for a long time now. 
However, there is a danger that the programming language community will pick 
something from their side without any input from the database community. A stronger 
interaction between these two groups is highly desirable, and would benefit both sides. 
  
  
Impact of hardware trends 
---------------------------------- 
  



Hardware/software co-design would be ideal to cope with these hardware trends. Query 
engines will adapt to whatever hardware is available, but if specialized hardware is 
coming, it can as well try to support frequent data processing operations more 
efficiently. Examples for that could be efficient vectorized gather support or 
asynchronous bulk hash table lookups. These operations occur very frequently during 
query processing, and make a significant part of execution costs, and thus would be 
particularly attractive to have as specialized circuits. 
  
On the other hand data processing engines are not a mass market compared to 
consumer devices, thus it is not realistic to expect specialized circuits in upcoming 
chips. Unless these specialized operations would be useful in more generic programs, 
too, which could be the case for common operations like hash table lookups. In addition 
there are many constraints imposed by the underlying architectures. For example 
increasing the number of load ports in a CPU would be highly attractive for many data 
processing tasks, but doing so is nearly impossible in current mainstream architectures. 
  
The hardware community and the database community should discuss what is desirable 
from the software side and what is feasible from the hardware side, trying to find useful 
and commonly used functionality. 
  
Similar for storage devices, where interaction between hardware vendors and data 
processing engines could be very fruitful. Open-channel SSDs are an example where 
high-level logic can be brought closer to the hardware, where some database tasks can 
be implemented much more efficiently. 
  

 
Recommendations 
 

● Concentrate on weaknesses of current engines 
● Use cases beyond SQL 
● Hardware trends have a large impact on design 
● Abstractions for hardware zoo required 
● Win mind share with both performance and ease of use 
● Should consider the federated case in which different organizations, cloud or user 

devices retain control over data (or are confined by regional laws and privacy 
regulations) and want to do federated query processing 
 

Discussion Points 
 

● Are engines solved? Easy problems vs. hard challenges 
● Use cases in and beyond SQL 



● Usability and silos remain a huge problem 
● Interaction with other communities 
● Hardware trends, input from DB community 
● One size doesn’t fit all vs. silos and ease of use 

 
  



 
Scope: Sub-topics (not exhaustive and based on survey) that should be addressed 
 

● Query engine 
● Transaction Processing 
● Data lakes  
● Interoperability across multiple data systems and different type systems (engine 

aspects) 
● ML for Database Internals 
● Impact of hardware trends 
● Open-source 

 
1. Introduction 

 
 

2.  Our Accomplishments/Score Card so far 
What is the database community already doing to address these problems? 

 
3. Call to Action: What should the database community be doing to address these 

problems?  
What should be the goal of the database community? What are non-goals? 
 

4. Relationship to other Research Communities 
Discuss how the database community should manage relationship with other 

communities that work in this area 
 
 
 

Appendix 
-------------------------------------------------------------------------------------- 
Survey notes 
-------------------------------------------------------------------------------------- 
 
Transaction Processing Applications 
 

● Transaction processing (both multicore and distributed) 
● Transaction processing 
● Rethinking the boundaries between the application and the database (ORMs, SQL, txns). 
● Mapping, understanding and navigating the design space of data structures to 

accelerate research and engineering productivity and to enable a new class of systems 
with deep adaptivity. Special focus on NoSQL k-v stores which is an untapped 
opportunity for our community.  

● Data base design (customers have trouble with that). Interaction between data base 
design and application design 



● Schema evolution 
● Improving the ability of programmers to build data-centric systems and solutions: 

data-centric programming, software synthesis and beyond. → [Note: This topic can be 
here or under data analytics] 

 
 
 
Data Lakes and Heterogeneous Data Sources and Types 

● Data lakes and generally the management of heterogeneous types of data (videos, 
images, text, structured, etc.). 

● Video Data Analytics 
● Of course, a closely related trend is that users want to store and query very diverse and 

distributed datasets.  Hadoop-style ""RISC"" architectures for plugging in multiple 
engines via standard resource management and storage APIs such as HDFS and YARN is 
a good first step, but what does the future hold? Deeper integration with single engines 
capable of effective performance across files and pre-loaded tables? 

● Analytics of semi-structured data. 
● Data analytics across data centers 
● Lack of functionality (support for less conventional data types and operators) 
● Graph DB 

 
 
 
ML for Databases and Autonomic Databases 

● Auto-tuning/self-managed databases 
● Autonomous Systems 
● Using ML to improve Data Management Systems (ML for Systems). DB+ML. Machine 

learning and data management. ML is currently overhyped. integrating ML into 
relational engines. Machine learning. Opportunities for leveraging ML for Data Systems 
Stack. Leveraging machine learning techniques to solve data problems. Database 
machine learning. Learned index structures. DB's and machine learning (applying ML to 
DB problems). 

● "Automated tuning of the traditional data stacks using machine learning.  
● Instance-optimized Database Systems  (AI for Database Systems). 
● Using solvers for reasoning about queries and constraints (2) incorporating causal 

reasoning in declarative queries 
● Fusing AI and DB 

 
 
Hardware trends 
 

● GPGPUs, NVM 
● Hardware acceleration and the changing hardware landscape 
● Methods to allow data platform to exploit the full potential of the dramatically different 

hardware that is anticipated in the near future. 



● Non-Volatile Memory 
● Data management on heterogeneous hardware,  
● How can we best leverage rapid evolution in hardware (e.g., FPGAs, GPUs, RDMA, 

NVME) and software (e.g., NNs) as we expand the surface area of analytics that is 
natively supported in the DBMS?  Can we blend advances in multi-core processing with 
the massively distributed scale-out architectures for big data? 

● New storage media and impacts on DBMS architecture.  
● Impact of modern hardware on Data Systems Stack 
● Shared-Disk Architectures 
● Impact of new hardware on database systems 
● Co-design of DB software and underlying hardware (especially for the cloud). 
● Easy tailoring to specific context/data/hardware.  Understanding how a system behaves 

or would behave if the conditions/hardware/workload change.  
 
Usability 
 

● Ease-of-use, Reducing Complexity. Easy of use.  
● Is the problem of complexity of choosing and configuring data management systems 

only getting harder with the increased number of choices of tools we have today? I 
don't know this for a fact, but it seems plausible and worth discussing. 

● Usability for end-users, where the end-users are not DBA or programmers but 
"common" people. 

● Scalability and usability  
● Providing guidance to them. They are facing a vast number of tools and platforms, and 

when faced with a problem, they often do not even know where to begin. We are very 
good at developing technical solutions for point problems. But we really suck at 
providing guidance to users on how to solve the whole problem, end to end.  

● we need easier to use data platforms that don't require a PhD to install and ingest data! 
● fragmented data, too many tools,  
● Dealing with change management across the stack 

 
 
Open Source Projects 

● The discussion I think is worth having is how to encourage the community to develop 
and rally around open-source projects so they have significant impact whether it's in 
data integration or other areas of data management. There is not enough work on 
system building and reaching out to communities that actually build practical systems, 
such as the PyData/R community.  

● Lack of a good open-source distributed OLTP DBMS. This is the one thing that I have 
heard from companies multiple times in the last three years.  

 
 
-------------------------------------------------------------------------------------- 
 
Working Group Participants: 



 
Please list your name here, and add some notes about which content your are interested in. 
 
Beng Chin Ooi -- it is good to use h/w to accelerate, but it is making the system more and more 
specific to certain h/w?  
 
Sam madden - transactions / analytics, video, AI for databases.   As a general topic I’d like to see 
some discussion as to whether the academic community is focused on the right metrics.  Do we 
really need more TPS? 
 
AnHai Doan: I'm interested in data lakes, interoperability across data systems, ML for db 
internals, and usability and open source.  
 
C. Mohan: HTAP, Blockchain + Databases, Recovery, … 
 
Andy Pavlo: Autonomic/Self-Driving Databases 
 
Dave Andersen:  ML for Databases, hardware trends,  
 
Jignesh Patel:  

● Simply measuring performance needs to be rethought.  
○ We can’t just do raw latency/throughput as that is not a good measure in 

practice. But, our paper use these simple methods. Heck our papers don’t even 
report variance. Seems like for a community that cares about performance a lot, 
we really don’t know how to measure performance. Boxplots at the least 
everywhere! (BTW, some reviewers get very nervous when they see a box plot, 
so may need to educate folks on 101 in stats. Reviewers of performance papers 
must take a quiz perhaps before being declared experts? :-)  

○ We can do some $/DBUNIT (e.g. Sort benchmark’s Cloud category) but that is 
meaningless as any economist will tell you -- you need to worry about scale. If I 
get a low cost but have to have a PB DB and 1000 nodes install, that is not what 
most DB deployments look like. They are far smaller.  

○ TPC does a nicer job of breaking down by scale-factors, but misses the point that 
you may a limit on the budget so you can’t spend $100K to start with.  

○ End-to-end cost also includes other costs associated with downtime. All this 
means we need to start looking at how to measure performance in a new way.  

○ Single metric may not be enough, but we need to move away from just raw 
latency. 

○ Reporting at Nth percentile (N=95 or 99) is really important in cloud settings 
○ Need a good benchmark with modern metrics that the community can fall 

behind. This benchmark should allow “regular” folks to play and not need to 
provision a 100 node machine by default.  

● We as a community are poor in telling what relational DBMSs can do, and get 
side-swiped from outside by crazy ideas (that are going to production!) on how to build 
systems for specialized tasks (e.g. Graph databases, document stores … ) We should 



also work on making relational system not tied to SQL. That is killing us. The core 
relational engine can do a lot more, it’s not just a SQL engine. Widen the app surface! 

● We need to integrate text search far better inside a database engines that do other 
structured query processing (using RA) well. Lots of ideas but the world still does text 
search outside a DBMS. No reason it should. 

● We have overemphasised in the last decade “scaling out.” This is complementary to 
scaling-in, which involves making the most of the single nodes that are massive SMPs 
today and in the near future will be like a small datacenter with a mix of SN and SMP 
topologies prebuilt. Got to go back to the core. Do we really know know to use ~100 
core machines available today? 1000 cores?  

○ Think both single query and multiple concurrent queries. For OLAP the 
single-query case in important in real-time analytics applications. 

● NVM is poised for disruption. There will invariably be a cottage industry that incorrectly 
call for new solutions when new solutions are not needed.  Can we be smarter about 
this? See benchmarks above for one aspect, but the other is a good reference 
implementation using “good-old-techniques.” 

 
Stratos Idreos: Creating the Genome of Data Systems so that we can finally have some kind of 
understanding on how to design systems and why they behave the way they do, when they 
would break with a new feature, how to adopt new hardware and so on. Right now we do all 
system design manually which does not scale. Once we have a Genome, we can employ 
machine learning, solvers or new search techniques to build systems that self-design, i.e., the 
build the optimal or close to optimal storage and algorithms for the specific workload and 
hardware. Specific applications that I think are interesting in the next few years are NoSQL 
key-value stores, HTAP and storage for ML algorithms. Hardware software co-design can also 
bring very interesting new solutions that go beyond what we can do only with smart algorithms. 
Performance does not have to be the only metric: e.g., energy and memory amplification are 
crucial and can drive system design.  
 
Alvin Cheung: compilation and execution techniques for queries. Should queries be interpreted 
or compiled? What are the implications given new hardware trends? Also, DBs for non textual 
data, given that most of today’s data is in the form of images and videos. 
 
Raghu Ramakrishnan:  Cut-and-paste from my email: 
 
- How does the recent work in multi-core DB engine architectures (including this years SIGMOD 
PhD award) compose with the scale-out architectures for big data? 
  
- What is the implication of the evolution of warehouses to more heterogeneous data 
collections with a richer mix of analytics (including streaming/batch/interactive along one 
dimension, and ML/log analytics and text processing alongside TPC-H kind of workloads along 
another dimension)?  Increasingly users seem to prefer engines that cover a larger surface area 
as opposed to mixing and matching engines, and covering this broad spectrum presents novel 
challenges.  And the datasets are getting order of magnitude larger, thanks to scenarios like 
telemetry and IoT ... 



  
- What is the implication of the movement to cloud?  This means HW is much less reliable than 
custom on-prem clusters; it means lots of commodity VMs are the cost-effective way to go; 
elasticity poses interesting challenges wrt caching strategies; … 
 
Looks like you guys already touched on most of this.  I think a lot of the comments about 
changes in the HW landscape are spot on, and would just add my comment about cloud to this 
broader observation that the execution environment is being disrupted significantly. 
 
Gustavo Alonso: 

- We need to develop a more realistic understanding of performance and functionality. 
There should be a written record of what can be done so that there is publicly available 
information on what different systems can do under what constraints. It would also help 
to raise the profile of the conferences if that would be on of their regular outcomes 
(information relevant to database users and to companies).  

- Hardware is changing everything: processors, memory, interconnects, networking, etc. 
It is surprising how the academic community largely ignores the fact that modern 
hardware plays a huge role in the performance of a database engine. 

- Database engines can or could do more than SQL. This is an area that needs significant 
attention (topic related to the data science working group)  

 
 
 
Joe Hellerstein: 

● On trick I learned and now adhere to is to define and compare to “speed-of-light” 
performance goals for subsystems based on HW capabilities -- what is the fastest we 
could possibly go on this hardware. Then see how close we can get. Papers could report 
how close they are to the HW potential. For core tasks (e.g. record storage/retrieval, 
scans/sorts) you can model this pretty accurately. Then of course the challenge is to 
figure out whether you lose that win as you look at an end-to-end system. We did this 
internally in the Anna KVS work and it helped us get to an order or 2 of magnitude 
better than earlier systems for some workloads, but also exposed to us that once we 
nailed that, the bottleneck moved to the bandwidth of ethernet cards for handling 
remote client traffic. (BTW, sometimes you realize your “speed of light” model 
embedded assumptions that can be bypassed and you can go even faster … that’s a 
good discovery in itself, and simply causes more iteration on this process.) 

● Autoscaling and cost are critical metrics today in environments with shared resources -- 
primarily the cloud but also large private datacenters with virtualization (“private 
clouds”). Autoscaling opens up multidimensional tradeoffs between cost metrics and 
performance metrics. SLOs may be the right way to measure systems going forward. We 
need accepted metrics/benchmarks around this. 

 
Dan Suciu 

● A neglected topic seems to be heavy-duty database support for ML. By heavy-duty I 
mean pushing the entire ML task down the transformation/integration pipeline.  Typical 



entreprise ML applications start by constructing the “design matrix”, which usually 
means joining together all the relations that have any data of interest, then running 
some standard ML algorithm on the universal relation.  I know that in retail this is the 
common scenario, but I’m sure others domains also work this way.   The DB community 
has the know-how to push down the ML algorithms to the source tables: but this is not 
easy, since the ML algorithm often has lots of aggregates (x100, x1000), and may involve 
other operations that we don’t understand yet how to push down. 

 
 
Anastasia Ailamaki: 
  

● Interested in just-in-time data management, codegen, data 
virtualization. AI seeps through to the core of how we build these systems, in a 
genuinely constructive way that changes the paradigm toward lean and agile 
Stacks. 

● I support Jignesh’s point about the quality of measurement methodologies 100%. We 
should educate our community. Part of why the systems community suffers so much is 
that our credibility is lowered by sloppily done experiment. A closer look at and 
cross-reference of numbers often reveals that they don’t hold water! 

● Joe’s first point is about “envelope”—a technique which should be applied to all systems 
studies. What is the theoretical max we can push things to on a certain 
microarchitecture? Then evaluate the state of the art based on how close it is to that, 
and see if it is worth taking things further – before we change the microarchitecture. 
That’s hard to do but the learning benefit is huge! 

● We have A LOT to learn from the systems community (and vice versa). It almost seems 
that we have a wealth of big problems, and they come up with better solutions! A good 
idea may be to co-host top DB and systems conferences every couple of years, to help 
exposure, communication and exchange of ideas. 

● I’ve always worked on hardware conscious data management, but this nowadays needs 
to be done through hardware oblivious ways which employ late binding of alternatives 
to HW resources at hand. This way we can ensure utilization on cloud. 

 


