
Working Group Report on Database Engine
In Preparation for the Seattle DB Meeting, October 9-10, 2018

1. Introduction

This document contains the pre-meeting working group report on the database engine.
We discuss important research problems in this area, what has already been
accomplished, and what are important parts of these problems that we need to work on
now. We do not expect to have identified all the important problems at this stage of the
report generation process. This report will continue to get updated as the meeting
progresses.

The working group members should feel free to edit the text in this report directly. If you
delete text, please don’t remove it entirely. Instead, use strike-through font so deleted
text is easy to identify without tracking changes from prior versions. If you add text,
please use a different color than black, so new text is easy to identify. Ideally, you
should leave a comment as well, identifying yourself as the person behind the
addition/subtraction, and any other justification (if you feel a justification is necessary).

The report is divided into three sections, and these sections are divided into subsections
corresponding to important subtopics of the database engine that came up in the
pre-meeting survey: (1) Query engine (2) Transaction Processing (3) Data lakes (4)
Interoperability across multiple data systems and different type systems (engine
aspects) (5) ML for Database Internals (6) Impact of hardware trends (7) Open-source.

The first of these three sections discuss some important problems in each of these
subtopics, and our accomplishments so far in solving these problems. The next section
discusses what we, as a database community, should be doing to address these
problems, and some of our research goals in this area. In the final section we discuss
our relationship to other research communities.

2. Research problems and our accomplishments
thus far as a community

Query engine

Over the years the performance of query engines has greatly improved. Techniques like
main-memory optimized data structures, query compilation, just-in-time code gerated
generated operators, and more efficient synchronization primitives have led to execution
engines that are dramatically faster than previous generation systems. Techniques such
as vectorized execution and query-optimized data structures have also been important
factors in improving the performance of traditional SQL analytical systems.

There are many hard problems remaining to be solved, especially as both data sizes
and query complexities continue to grow. Our current systems are optimized for the
simple primitives found in typical SQL queries. Identifying and optimizing for a new set
of primitives required by complex analytics remains a challenge in the foreseeable
future. Achieving high performance for these new set of primitives is the next important
step.

Transaction Processing

Transaction processing has been one of the greatest success stories of the database
community. The community defined a set of useful guarantees (e.g., ACID) for arbitrary
groups of accesses to different items in the database, and these guarantees have
become widely relied upon by large numbers of application developers. The community
has led the way in enabling large amounts of concurrency of transactions on
single-processor, multi-processor systems, and distributed systems. Modern systems
can achieve transactional throughput larger than the vast majority of real-world
application requirements, and have continued to refine efficiency and adapt to changing
hardware.

One major issue that is present in modern systems is replication over large geographic
distances. Such geographically replicated systems present significant challenges for

maintaining consistency and latency given the fundamental limitations in the speed with
which data can travel from one part of the world to another. Almost every new system
that is developed trades off consistency and latency in a new and different way. There
are dozens of different proposed "consistency levels", each one with a different set of
guarantees. There is a significant need to unify around a more narrow narrower set of
guarantees, as the community did with ACID and the small number of widely
implemented isolation levels from a generation earlier.

Another major issue is that the profile of an application developer has evolved over
time. Database systems were originally designed for enterprise use cases for
businesses that were large and somewhat "slow-moving". The assumption was that
prior to application development, the developer had a good sense of how the data would
be accessed, and had time to plan in advance, and carefully design a schema for that
application. Modern application developers get a "minimum viable prototype" complete
as soon as possible, and continuously refine an application after it is already live. There
is an increasing need for database systems that evolve with an application.

Data Lakes

Database systems have long contained support for storing and accessing
non-structured data, including videos, images, text, and nested data. However, many
data scientists prefer to use scalable data processing platforms (such as Hadoop)
instead of traditional database systems as a "data lake". The systems provide a
scalable file system that can store arbitrary data across a large number of machines in a
cluster, and encourage the use of targeted data formats for different data types, that
facilitate efficient parallel processing of those data types.

A major accomplishment of the database community has been the integration of parallel
database processing techniques for the structured data stored in these data lake
platforms. The original versions of Hadoop supported only MapReduce primitives, which
lead to large amounts of inefficiency for processing and joining structured data. Projects
such as Hive, HadoopDB, Impala, Pig, Presto, Scope, Flink and Spark brought many
ideas from the database community to data lakes, including vectorized and
column-oriented processing, operating on compressed data, broadcast and
co-partitioned joins, declarative queries, and cost-based query optimization.

Unfortunately, data lakes have accentuated the data cleaning, data integration, and
data curation problems that have long been studied by the database community. We
discuss these problems further in Section 3.

ML for Databases and Autonomic Databases
--

There are two approaches to using ML to improve DBMSs. The first are methods that
alter the runtime behavior of the DBMS’s internal components. Examples of such
components include the query optimizer’s cost model or index data structures. These
are written by the developers that built the DBMS and are controlled by rules or
heuristics. Thus, instead of relying on these hardcoded rules, new research has
explored ways to learn new policies based on the observed workload. The second
category is on methods for automatically tuning the configuration of the system, such as
the database’s physical design, knob configuration, and hardware resources. This is
something that DBAs traditionally manage, although there is a long research history of
tools to aid them with this process. The goal of this line of work is to relieve humans
from many of these laborious tuning tasks, so that they can focus on other, more
enriching activities. There is some overlap between these two categories, but the key
difference is that the first is about tuning a single component of the system whereas the
second is about taking a holistic view of the overall system.

Interoperability across multiple data systems and different type systems (engine
aspects)

Interoperability is traditionally a difficult topic. In theory we have a SQL standard that
allows for executing queries and exchanging data in a portable manner across systems.
In practice, the standard is very weak, leaving many details as "implementation
defined". As a consequence, only very simple queries work similarly across systems.
Even for the relatively simple TPC-H queries, different systems produce slightly different
results due to differences in type inference etc. This situation is largely caused by
database vendors that want to fixate their existing behavior and have little interest in
improving interoperability.

There has been some momentum from the outside to change that, in particular from the
"big data" and Hadoop world. Many systems can nowadays read file formats like
RCFile, Orc, or Parquet, which makes data exchange more interoperable. However,

there is some friction between the NF2 nature of some of these file formats and the
relational world of most engines.

Unfortunately, data exchange interoperability alone does not help with the query
problem. Many existing applications use complex, often hand-crafted abstraction layers
that use complex SQL constructs to try to minimize the differences between the
systems. This often results in very complex queries that are both hard to optimize and
hard to execute.

Impact of hardware and networking trends

Query engines are always adopting adapting to hardware trends. Often, we try to make
the best out of hardware designed for others, in particular gaming and ML. Ideally, we
should try to guide hardware vendors to better suit our needs. Nonetheless, hardware
development is hugely influential for engine design. For example, it is clear that today all
systems must scale to a large number of cores. Traditional database systems have
already spent much effort, and made much progress on multi-core processing,
increasing locality, and minimizing NUMA effects.

Changes in the storage hierarchy also have an important impact on database systems.
SSDs are becoming very common as a storage medium, and their fast random I/O and
asymmetric write behavior has an impact on systems design. The emerging non-volatile
memory has the a chance to disrupt the storage hierarchy even further, as it promises
persistent high-density storage with low latency. As this hardware is not widely available
yet, and particularly since its price is not known yet, we cannot predict the effect on
systems reliably. But there is a general trend towards heterogeneity in hardware, for
example by using GPUs or FPGAs as co-processors, and some systems make use of
that to offload processing tasks to specialized hardware. The memory hierarchy extends
across machines, especially in cloud environments.

For general purpose systems there is some tension between specialization and
software complexity. Making use of every available hardware is difficult, in particular if
the hardware is not widely used or if the complexity of using it is high. For GPUs there
are some existing abstraction layers, but for FPGAs or other specialized hardware, the
software is often closely tied to that particular hardware.

Workload management

The trends noted above about data lakes and heterogeneous workloads come with
corresponding changes in user behaviour and expectations. Clusters of machines that
are viewed as shared resources for storing data and running these workloads are
common, and increasingly, users expect workload management features such as fair
allocation, managed queues with priorities and access controls, and good resource
utilization while guaranteeing SLAs for important, time-critical parts of the workload.
Meeting these goals while supporting the heterogeneity in the environment and
workloads is challenging.

Open source projects

The database community has had large amounts of success with contributing and
maintaining highly sophisticated database systems as open source projects. One great
example of this is the PostgreSQL project which originated as a research project in the
community and has been used as the core engine for dozens of subsequent
commercial database systems and academic research projects. MySQL and its modular
design with pluggable storage engines has also been very impactful. Many smaller
systems targeted at specific components of a database system, such as BerkeleyDB
and LevelDB have also made impact. For analytics, Apache Hadoop has become
extremely popular and is used by tens of thousands of end users. One interesting trend
is that systems that have started as a proprietary codebase have become open source
after achieving maturity (such as the Greenplum analytical database system).

While several good open source single machine transactional and analytical database
systems exist, for distributed deployments, only systems targeting for analytical
workloads are well covered. There does not yet exist a widely-used distributed, open
source, transactional database system that enforces traditional ACID guarantees and
strictly serializable isolation. While there does exist open source projects with
contributions almost entirely from a single-vendor (such as CockroachDB, TiDB,
YugaByte), we have yet to see a truly communal open source distributed transactional
database engine.

3. Action items for the database community

Query engine

Research on query engines should continue in multiple dimensions. Scalability and
complex analytics remain important challenges for the database community. Today's
use cases include very large, complex, machine generated analytical queries, with
dozens or even hundreds of relations. These use cases are very challenging both from
an execution perspective and also for query optimization. Existing benchmarks do not
cover these cases very well, because they concentrate on scaling data size instead of
query complexity. It is clear that we could do much better here, both in the engines
themselves and also with testing and benchmarking. In the research community,
benchmarking should also be considered more critical; experiments are often very
artificial, do not report variance or any effects of complex system interactions, and are
sometimes hard to reproduce. A more realistic setup, including more realistic data and
queries, would be helpful for the community at large. Finally, engines should go beyond
pure SQL processing. The analytical processing capability capabilities of database
engines are very powerful in many use cases, including "data science" applications, but
offering just a SQL interface is not enough for most users. Having a richer interface for
applications and users would be essential for bringing these scalable processing
capabilities to a much wider usage.

Transaction Processing

Traditional database systems are simply too rigid for modern applications developers.
Today's applications evolve rapidly --- the schema changes, data access patterns
change, and the scale of access changes. Many application developers have turned to
"NoSQL" systems that they believe are more flexible and able to adapt to their rapidly
evolving applications. Instead of pointing out the flaws of failing to plan ahead, the
database community needs to be better attuned to the needs of the modern application
developer and build highly evolvable systems.

"Database systems" is not a required course in most university computer science
majors. Furthermore, most application developers do not have a bachelor degree in

computer science. As a result, the vast majority of database system users have no
formal training in database systems. Over time, database system users are becoming
increasingly less sophisticated. There is thus a need for database systems to become
easier to use and more robust to incorrect or suboptimal usage. Hosted database
systems in the cloud have reduced complexity for the application developer, but
database performance is still very much susceptible to deterioration in the presence of
unsophisticated application developers.

It is tempting to state that improving transaction throughput should be a non-goal of the
database community, given the extremely high throughputs attainable by modern
systems. Although it is true that it is very hard to find an application that requires more
throughput than available on a modern, scalable database system, we still predict that in
the future, greater throughput will be needed. In today's applications, transactions are
usually initiated by humans that and can only transact at the speed a human can act.
Tomorrow's applications may have machine-initiated transactions, and need far greater
throughput that than what today's transactional systems are able to produce.

Data Lakes

Open source data lakes have made the cost of storing large amounts of data extremely
small. As a result, a common use case is to dump data into a data lake without clearly
defined curation processes, resulting in a level of chaos akin to a toddler's play room.
There is a tremendous need for bringing order to this chaos, and there remains large
amounts of "low-hanging fruit" where even imperfect solutions bring significant value.

There is also a need for improved data provenance. Data lakes typically run a data
processing algorithm on a large amount of data, and may produce a large amount of
data as a result of this operation. This resulting data is stored back in the data lake and
may be processed by subsequent operations. Although there do exist good solutions for
tracking this provenance at a high level, much work remains to be performed and lower
data granularities.

Supporting interoperability across diverse engines operating on heterogeneous data
remains challenging, especially with support for effectively sharing the underlying
resources while meeting SLAs for key jobs.

Data visualization is also an important problem in this area. Many users have trouble
getting a grasp on what data exists in the data lake, what are the properties of different
datasets, and how do processing operations affect these properties. As data gets larger,
the challenging of getting started with understanding data increases rapidly, and
traditional data search techniques are insufficient.

ML for Databases and Autonomic Databases
--
The early work in this field is mostly about training deep neural networks (DNNs) to
replace existing, human-built methods and components. For example, researchers have
proposed using DNNs to replace histograms for estimating the distribution of a column’s
values. Where this work will eventually go is toward how to build systems that use the
information collected about databases, workloads, and the system itself to extract
patterns that are non-obvious to humans. That means instead of just replacing existing
histograms, the system could train a network that can identify weird correlations
between tables/columns or incorporate growth trends in its predictions. Future DBMSs
can use such “learned” models in conjunction with existing data structures rather than
supplanting them entirely. This would allow it to do more than what is possible today
with existing techniques. The challenge will be how to maintain these models in a
dynamic environment while ensuring performance stability and avoiding regressions if
the models go awry.

Interoperability across multiple data systems and different type systems (engine
aspects)

Having a stronger SQL- (or in general: query-)standard would be highly desirable. In the
programming languages world, nobody would accept that different compilers produce
different results for everyday programs. Having a well-defined query semantics that
systems agree upon would be incredibly useful for interoperability. Unfortunately, this
standard is unlikely to happen. Existing system vendors do not want to change highly
complex existing code, and fixing the very large and complex SQL standard is an
overwhelming endeavor. The best chance to improve interoperability is to think beyond
SQL. Users increasingly want to express their algorithms in some form of programming
language, and they will need some well defined semantics for that. Getting the

semantics standardized now with a robust standard will allow engines to expose
interfaces with better interoperability.

The challenge is to find a good compromise between expressiveness, ease of use,
optimizability, and efficiency of execution. For example, some users may want to
express their algorithms in Python, which has well defined semantics and is widely
known, but is usually not declarative and not efficient to execute. The Spark
DataFrames are more database-like, but still not nearly as declarative as SQL. Finding
a good compromise is challenging, but if successful will be very impactful.

Furthermore, it is instructive to think about the applications themselves as another "data
system", with its own type system, access pattern, impedance mismatch, and so on. For
users it would be highly desirable to blur the distinction between query engine and
application, allowing easy and seamless access to the underlying database system.

Impact of hardware trends

Adapting to changing hardware is a must, as systems design is often driven by what the
hardware offers as functionality. One particular interesting ongoing trend is the
development in SSD storage. SSDs have been around for quite a while, but in recent
years both the price per GB and access latencies have improved dramatically. In fact,
performance has improved so much that it is really a game changer compared to older
SSDs. With modern high-speed SSDs, it becomes feasible to challenge a pure
in-memory system, with a much better performance per dollar. These changes are very
important because systems design for a low-latency SSD look quite different from a
system aiming at rotating disks.

An interesting alternative is the upcoming non-volatile memory that promises even
better latency, albeit presumably at a higher price point. Systems aiming for NVM usage
would again look quite different from systems aiming at SSDs. In the long run it might be
beneficial to combine both, for example using fast SSDs for storage and NVM for
logging and recovery, as that promises very good performance at a reasonable price.
Similarly, thinking of remote storage sub-systems with fast networking offers promise.

]

The increasing heterogeneity in hardware is a significant challenge to systems design.
Re-implementing large parts of the system whenever new hardware comes up is not a
sustainable option, and different users will have different combinations of specialized
hardware available. It is necessary to develop abstraction layers that allow for
expressing high-level algorithms across these different devices in unified way, and that
lead to efficient execution on whatever hardware is available. This is a hard problem
because the different hardware devices behave very differently, and, e.g., a CPU and a
GPU will favor different execution modes. But nevertheless such abstractions are
necessary to cope with the upcoming zoo of specialized hardware.

Section 4 discusses the relationship with the architecture community for affecting
hardware development trends.

Open source projects

As mentioned above, there is a significant gap in community developed, open source,
distributed ACID transactional database systems that support strictly serializable
isolation. It is important that the community unify around an open source project in this
space in the upcoming years.

4. Relationship to other Research Communities

Query engine

There are, or should be, close ties between query engines and the systems community.
These groups are often looking at very similar problems, in particular concerning the
interactions between the query engine, the hardware, and the operating system. In
practice these ties could be stronger. There are a few people that are active in both
communities, but still the communities are often separated. Also from a practical
perspective it would be highly desirable to have better interaction between engines and
operating systems. For example, it is very hard and inefficient to guarantee durability
with today's file system abstractions, even though the underlying hardware could often
provide that efficiently. But that functionality is not exposed by any mainstream OS.
Another neighboring field is the programming languages community. When query
engines go beyond SQL, programming languages become very important. Also, the
programming languages community itself can benefit from a better interaction with

databases: Mainstream programming languages like C++ currently work on exposing
data parallelism in a natural way within the programming language itself. This is highly
related to how database query languages work, and, as additional benefit, makes it
easier to execute the program fragments within the query engine itself.

Transaction Processing

The OSDI, SOSP, and NSDI communities have published more papers on
geographically replicated database systems than the database community. Several
highly influential papers published by those communities are not cited frequently enough
by papers in SIGMOD or VLDB. The database community needs to do a better job of
building on top of the pioneering work in this area from these other communities.

Data Lakes

Many of the data lake challenges mentioned above concern interaction of humans with
data. Collaboration and cross-pollination with the HCI community is important for the
development of usable tools in this area.

Interoperability across multiple data systems and different type systems (engine
aspects)

The programming languages community is working on very similar problems, in
particular for data parallel processing. There are people that are active in both
communities, for example the DBPL workshop has been ongoing for a long time now.
However, there is a danger that the programming language community will pick
something from their side without any input from the database community. A stronger
interaction between these two groups is highly desirable, and would benefit both sides.

Impact of hardware trends

Hardware/software co-design would be ideal to cope with these hardware trends. Query
engines will adapt to whatever hardware is available, but if specialized hardware is
coming, it can as well try to support frequent data processing operations more
efficiently. Examples for that could be efficient vectorized gather support or
asynchronous bulk hash table lookups. These operations occur very frequently during
query processing, and make a significant part of execution costs, and thus would be
particularly attractive to have as specialized circuits.

On the other hand data processing engines are not a mass market compared to
consumer devices, thus it is not realistic to expect specialized circuits in upcoming
chips. Unless these specialized operations would be useful in more generic programs,
too, which could be the case for common operations like hash table lookups. In addition
there are many constraints imposed by the underlying architectures. For example
increasing the number of load ports in a CPU would be highly attractive for many data
processing tasks, but doing so is nearly impossible in current mainstream architectures.

The hardware community and the database community should discuss what is desirable
from the software side and what is feasible from the hardware side, trying to find useful
and commonly used functionality.

Similar for storage devices, where interaction between hardware vendors and data
processing engines could be very fruitful. Open-channel SSDs are an example where
high-level logic can be brought closer to the hardware, where some database tasks can
be implemented much more efficiently.

Recommendations

● Concentrate on weaknesses of current engines
● Use cases beyond SQL
● Hardware trends have a large impact on design
● Abstractions for hardware zoo required
● Win mind share with both performance and ease of use
● Should consider the federated case in which different organizations, cloud or user

devices retain control over data (or are confined by regional laws and privacy
regulations) and want to do federated query processing

Discussion Points

● Are engines solved? Easy problems vs. hard challenges
● Use cases in and beyond SQL

● Usability and silos remain a huge problem
● Interaction with other communities
● Hardware trends, input from DB community
● One size doesn’t fit all vs. silos and ease of use

Scope: Sub-topics (not exhaustive and based on survey) that should be addressed

● Query engine
● Transaction Processing
● Data lakes
● Interoperability across multiple data systems and different type systems (engine

aspects)
● ML for Database Internals
● Impact of hardware trends
● Open-source

1. Introduction

2. Our Accomplishments/Score Card so far
What is the database community already doing to address these problems?

3. Call to Action: What should the database community be doing to address these

problems?
What should be the goal of the database community? What are non-goals?

4. Relationship to other Research Communities
Discuss how the database community should manage relationship with other

communities that work in this area

Appendix
--
Survey notes
--

Transaction Processing Applications

● Transaction processing (both multicore and distributed)
● Transaction processing
● Rethinking the boundaries between the application and the database (ORMs, SQL, txns).
● Mapping, understanding and navigating the design space of data structures to

accelerate research and engineering productivity and to enable a new class of systems
with deep adaptivity. Special focus on NoSQL k-v stores which is an untapped
opportunity for our community.

● Data base design (customers have trouble with that). Interaction between data base
design and application design

● Schema evolution
● Improving the ability of programmers to build data-centric systems and solutions:

data-centric programming, software synthesis and beyond. → [Note: This topic can be
here or under data analytics]

Data Lakes and Heterogeneous Data Sources and Types

● Data lakes and generally the management of heterogeneous types of data (videos,
images, text, structured, etc.).

● Video Data Analytics
● Of course, a closely related trend is that users want to store and query very diverse and

distributed datasets. Hadoop-style ""RISC"" architectures for plugging in multiple
engines via standard resource management and storage APIs such as HDFS and YARN is
a good first step, but what does the future hold? Deeper integration with single engines
capable of effective performance across files and pre-loaded tables?

● Analytics of semi-structured data.
● Data analytics across data centers
● Lack of functionality (support for less conventional data types and operators)
● Graph DB

ML for Databases and Autonomic Databases

● Auto-tuning/self-managed databases
● Autonomous Systems
● Using ML to improve Data Management Systems (ML for Systems). DB+ML. Machine

learning and data management. ML is currently overhyped. integrating ML into
relational engines. Machine learning. Opportunities for leveraging ML for Data Systems
Stack. Leveraging machine learning techniques to solve data problems. Database
machine learning. Learned index structures. DB's and machine learning (applying ML to
DB problems).

● "Automated tuning of the traditional data stacks using machine learning.
● Instance-optimized Database Systems (AI for Database Systems).
● Using solvers for reasoning about queries and constraints (2) incorporating causal

reasoning in declarative queries
● Fusing AI and DB

Hardware trends

● GPGPUs, NVM
● Hardware acceleration and the changing hardware landscape
● Methods to allow data platform to exploit the full potential of the dramatically different

hardware that is anticipated in the near future.

● Non-Volatile Memory
● Data management on heterogeneous hardware,
● How can we best leverage rapid evolution in hardware (e.g., FPGAs, GPUs, RDMA,

NVME) and software (e.g., NNs) as we expand the surface area of analytics that is
natively supported in the DBMS? Can we blend advances in multi-core processing with
the massively distributed scale-out architectures for big data?

● New storage media and impacts on DBMS architecture.
● Impact of modern hardware on Data Systems Stack
● Shared-Disk Architectures
● Impact of new hardware on database systems
● Co-design of DB software and underlying hardware (especially for the cloud).
● Easy tailoring to specific context/data/hardware. Understanding how a system behaves

or would behave if the conditions/hardware/workload change.

Usability

● Ease-of-use, Reducing Complexity. Easy of use.
● Is the problem of complexity of choosing and configuring data management systems

only getting harder with the increased number of choices of tools we have today? I
don't know this for a fact, but it seems plausible and worth discussing.

● Usability for end-users, where the end-users are not DBA or programmers but
"common" people.

● Scalability and usability
● Providing guidance to them. They are facing a vast number of tools and platforms, and

when faced with a problem, they often do not even know where to begin. We are very
good at developing technical solutions for point problems. But we really suck at
providing guidance to users on how to solve the whole problem, end to end.

● we need easier to use data platforms that don't require a PhD to install and ingest data!
● fragmented data, too many tools,
● Dealing with change management across the stack

Open Source Projects

● The discussion I think is worth having is how to encourage the community to develop
and rally around open-source projects so they have significant impact whether it's in
data integration or other areas of data management. There is not enough work on
system building and reaching out to communities that actually build practical systems,
such as the PyData/R community.

● Lack of a good open-source distributed OLTP DBMS. This is the one thing that I have
heard from companies multiple times in the last three years.

--

Working Group Participants:

Please list your name here, and add some notes about which content your are interested in.

Beng Chin Ooi -- it is good to use h/w to accelerate, but it is making the system more and more
specific to certain h/w?

Sam madden - transactions / analytics, video, AI for databases. As a general topic I’d like to see
some discussion as to whether the academic community is focused on the right metrics. Do we
really need more TPS?

AnHai Doan: I'm interested in data lakes, interoperability across data systems, ML for db
internals, and usability and open source.

C. Mohan: HTAP, Blockchain + Databases, Recovery, …

Andy Pavlo: Autonomic/Self-Driving Databases

Dave Andersen: ML for Databases, hardware trends,

Jignesh Patel:

● Simply measuring performance needs to be rethought.
○ We can’t just do raw latency/throughput as that is not a good measure in

practice. But, our paper use these simple methods. Heck our papers don’t even
report variance. Seems like for a community that cares about performance a lot,
we really don’t know how to measure performance. Boxplots at the least
everywhere! (BTW, some reviewers get very nervous when they see a box plot,
so may need to educate folks on 101 in stats. Reviewers of performance papers
must take a quiz perhaps before being declared experts? :-)

○ We can do some $/DBUNIT (e.g. Sort benchmark’s Cloud category) but that is
meaningless as any economist will tell you -- you need to worry about scale. If I
get a low cost but have to have a PB DB and 1000 nodes install, that is not what
most DB deployments look like. They are far smaller.

○ TPC does a nicer job of breaking down by scale-factors, but misses the point that
you may a limit on the budget so you can’t spend $100K to start with.

○ End-to-end cost also includes other costs associated with downtime. All this
means we need to start looking at how to measure performance in a new way.

○ Single metric may not be enough, but we need to move away from just raw
latency.

○ Reporting at Nth percentile (N=95 or 99) is really important in cloud settings
○ Need a good benchmark with modern metrics that the community can fall

behind. This benchmark should allow “regular” folks to play and not need to
provision a 100 node machine by default.

● We as a community are poor in telling what relational DBMSs can do, and get
side-swiped from outside by crazy ideas (that are going to production!) on how to build
systems for specialized tasks (e.g. Graph databases, document stores …) We should

also work on making relational system not tied to SQL. That is killing us. The core
relational engine can do a lot more, it’s not just a SQL engine. Widen the app surface!

● We need to integrate text search far better inside a database engines that do other
structured query processing (using RA) well. Lots of ideas but the world still does text
search outside a DBMS. No reason it should.

● We have overemphasised in the last decade “scaling out.” This is complementary to
scaling-in, which involves making the most of the single nodes that are massive SMPs
today and in the near future will be like a small datacenter with a mix of SN and SMP
topologies prebuilt. Got to go back to the core. Do we really know know to use ~100
core machines available today? 1000 cores?

○ Think both single query and multiple concurrent queries. For OLAP the
single-query case in important in real-time analytics applications.

● NVM is poised for disruption. There will invariably be a cottage industry that incorrectly
call for new solutions when new solutions are not needed. Can we be smarter about
this? See benchmarks above for one aspect, but the other is a good reference
implementation using “good-old-techniques.”

Stratos Idreos: Creating the Genome of Data Systems so that we can finally have some kind of
understanding on how to design systems and why they behave the way they do, when they
would break with a new feature, how to adopt new hardware and so on. Right now we do all
system design manually which does not scale. Once we have a Genome, we can employ
machine learning, solvers or new search techniques to build systems that self-design, i.e., the
build the optimal or close to optimal storage and algorithms for the specific workload and
hardware. Specific applications that I think are interesting in the next few years are NoSQL
key-value stores, HTAP and storage for ML algorithms. Hardware software co-design can also
bring very interesting new solutions that go beyond what we can do only with smart algorithms.
Performance does not have to be the only metric: e.g., energy and memory amplification are
crucial and can drive system design.

Alvin Cheung: compilation and execution techniques for queries. Should queries be interpreted
or compiled? What are the implications given new hardware trends? Also, DBs for non textual
data, given that most of today’s data is in the form of images and videos.

Raghu Ramakrishnan: Cut-and-paste from my email:

- How does the recent work in multi-core DB engine architectures (including this years SIGMOD
PhD award) compose with the scale-out architectures for big data?

- What is the implication of the evolution of warehouses to more heterogeneous data
collections with a richer mix of analytics (including streaming/batch/interactive along one
dimension, and ML/log analytics and text processing alongside TPC-H kind of workloads along
another dimension)? Increasingly users seem to prefer engines that cover a larger surface area
as opposed to mixing and matching engines, and covering this broad spectrum presents novel
challenges. And the datasets are getting order of magnitude larger, thanks to scenarios like
telemetry and IoT ...

- What is the implication of the movement to cloud? This means HW is much less reliable than
custom on-prem clusters; it means lots of commodity VMs are the cost-effective way to go;
elasticity poses interesting challenges wrt caching strategies; …

Looks like you guys already touched on most of this. I think a lot of the comments about
changes in the HW landscape are spot on, and would just add my comment about cloud to this
broader observation that the execution environment is being disrupted significantly.

Gustavo Alonso:

- We need to develop a more realistic understanding of performance and functionality.
There should be a written record of what can be done so that there is publicly available
information on what different systems can do under what constraints. It would also help
to raise the profile of the conferences if that would be on of their regular outcomes
(information relevant to database users and to companies).

- Hardware is changing everything: processors, memory, interconnects, networking, etc.
It is surprising how the academic community largely ignores the fact that modern
hardware plays a huge role in the performance of a database engine.

- Database engines can or could do more than SQL. This is an area that needs significant
attention (topic related to the data science working group)

Joe Hellerstein:

● On trick I learned and now adhere to is to define and compare to “speed-of-light”
performance goals for subsystems based on HW capabilities -- what is the fastest we
could possibly go on this hardware. Then see how close we can get. Papers could report
how close they are to the HW potential. For core tasks (e.g. record storage/retrieval,
scans/sorts) you can model this pretty accurately. Then of course the challenge is to
figure out whether you lose that win as you look at an end-to-end system. We did this
internally in the Anna KVS work and it helped us get to an order or 2 of magnitude
better than earlier systems for some workloads, but also exposed to us that once we
nailed that, the bottleneck moved to the bandwidth of ethernet cards for handling
remote client traffic. (BTW, sometimes you realize your “speed of light” model
embedded assumptions that can be bypassed and you can go even faster … that’s a
good discovery in itself, and simply causes more iteration on this process.)

● Autoscaling and cost are critical metrics today in environments with shared resources --
primarily the cloud but also large private datacenters with virtualization (“private
clouds”). Autoscaling opens up multidimensional tradeoffs between cost metrics and
performance metrics. SLOs may be the right way to measure systems going forward. We
need accepted metrics/benchmarks around this.

Dan Suciu

● A neglected topic seems to be heavy-duty database support for ML. By heavy-duty I
mean pushing the entire ML task down the transformation/integration pipeline. Typical

entreprise ML applications start by constructing the “design matrix”, which usually
means joining together all the relations that have any data of interest, then running
some standard ML algorithm on the universal relation. I know that in retail this is the
common scenario, but I’m sure others domains also work this way. The DB community
has the know-how to push down the ML algorithms to the source tables: but this is not
easy, since the ML algorithm often has lots of aggregates (x100, x1000), and may involve
other operations that we don’t understand yet how to push down.

Anastasia Ailamaki:

● Interested in just-in-time data management, codegen, data
virtualization. AI seeps through to the core of how we build these systems, in a
genuinely constructive way that changes the paradigm toward lean and agile
Stacks.

● I support Jignesh’s point about the quality of measurement methodologies 100%. We
should educate our community. Part of why the systems community suffers so much is
that our credibility is lowered by sloppily done experiment. A closer look at and
cross-reference of numbers often reveals that they don’t hold water!

● Joe’s first point is about “envelope”—a technique which should be applied to all systems
studies. What is the theoretical max we can push things to on a certain
microarchitecture? Then evaluate the state of the art based on how close it is to that,
and see if it is worth taking things further – before we change the microarchitecture.
That’s hard to do but the learning benefit is huge!

● We have A LOT to learn from the systems community (and vice versa). It almost seems
that we have a wealth of big problems, and they come up with better solutions! A good
idea may be to co-host top DB and systems conferences every couple of years, to help
exposure, communication and exchange of ideas.

● I’ve always worked on hardware conscious data management, but this nowadays needs
to be done through hardware oblivious ways which employ late binding of alternatives
to HW resources at hand. This way we can ensure utilization on cloud.

