Databases and Technology

Trends

David G. Andersen
Carnegie Mellon University

(& Google Brain, but not for this talk)

With key thanks to Michael Kaminsky, Anuj Kalia,
Huanchen Zhang, Kim Keeton, Andy Pavlo, Erica
Fuchs, and the Brain team.

A travelin
Clectronic mail
ter ang modem at

fRCA)

9 executive recej

VEs messages from his office
System by

means of a hand-held
a public telephone.

2018:

Moore’s Z

Intel’s Philosophy Prior to 2005

Transparently make existing code run faster
How?

- Higher frequency
- Dennard scaling: Smaller features let you reduce voltage & current
- Higher power

- Better IPC

- Faster multipliers, branch prediction, prefetching, ... architectural magic.

2005: End of Dennard scaling.

2005-2018: Putting Parallelism on the Programmer

@ Cores A Vector Width

30 600

448x

20 400

200

1995 2000 2005 2010 2015

w-siié;iassi;ss

ﬂmwmqumummmn-.unw.WMwwu

-~

Rt ll-l-.'.ﬁl"ﬁ.
alle 1 :i:. i ianlt

-
L I8 Le v
- et
| pAgved B b
. .
sl &

12
=
I

RS

l Il((‘lll’l‘ ’l-i

Hmmnwmwmﬂnw mwmwmwmaq w

e i o et [e S et e e

ummmmmwmwnw

CEERERERERTS

PENE AR VA A A A

e - & .»b ‘b.-l."l.lﬂo‘
TR R -
i | 0 m <::-. 1
..nnna e ‘ b :u\- g
3

i s S i b el o o s i i i e iy o'llnlulv ,al'lll

mwmmm ”MaﬂmwmwmwmwMﬂmwmm w

CFRERFARRESES BRARRARCS ERES

bt ST

‘I
T t l.-.f

AT B S SRR e

Technology scaling over time

Technology Scaling

10 ®
®
®
®
o
= % o
£ 1 ® [}
2 e
o :'2 it
& i
g odee
2 ® 0
3 08s
w QBB
ese
0.1 [TT]
YT
T
°
1960 1974 1988 2002 2016

Technology Scaling in 2018

2010: Intel 32nm

2012: Intel 22nm +2 years
2015: Intel 14nm +3 years
2H 2019: Intel 10nm? +4 years?

Intel 7nm, TSMC 5nm use Extreme Ultraviolet Lithography:

2007: "EUVL may be in pilot production [in 2010]
and in large-scale production [in 2012]”
2016: “EUV may be ready by 2018”
2018: “EUV is currently being developed for high volume use by 2020"

Moore’s law as we know it is dead

The cadence is dead.

We’re not done with all improvements, but they will be slower coming and
increasingly irregular.

This is Moore’s Zombie.

The “More than Moore” approach

“Functional diversification of semiconductor-based devices’
- Integration of sensors, RF, MEMS, quantum?, storage

GlobalFoundries Stops All Tnm Development:
Opts To Focus on Specialized Processes

by Anton Shilov & Ian Cutress on August 27, 2018 4:01 PM EST

Flowering of application-specific chips

Google TPU v1

30-80x TOPS/Watt vs
2015 CPUs and GPUs

8GiB DRAM
8-bit fixed point

256x256 MAC unit

Local Unified Buffer for

Matrix Multiply Unit

Activations (256x256x8b=64K MAC)
(96Kx256x8b = 24 MiB) 24%
29% of chip
D Host Accumulators g
": Interf. 2% (4Kx256x32b =4 MiB) 6% |
M ' ————— .4 M
port - Activation Pipeline 6% port
% |, JOFCE | - iy
57 Interface 3% | . : | Misc. /O 1%

ASICs in the wild at gigacorps

Google: TPUv1, TPUv2, TPUV3

Amazon: Hypothesized Al chip,
Custom VM controller,
Custom switching chip

Apple: Its own ARM series;
Custom Al chip

Vertically-integrated industry giants
creating workload-optimized ASICs

Schonjochbahn-Mitte €]

We will have more advances - but they're bumpy

Intel “Apache Pass” persistent memory

(likely a phase-change memory)

... a one-time advance.

Optical interconnects would
Improve DRAM bandwidth/reach
... a one-time advance.

Machine Learning
Graphics & HPC

Video encode/decode

DB primitives?
- Some already handled by GPUs, crypto

% of Cryptographic
cycles Network?

Diminishing
Returns

Implementation Complexity

Can’t outrun Amdahl

Moore:
Most CPU functions got faster simultaneously;
Memory density scaled too!
--> |/O primary bottleneck to work around.

Multicore:
+ Parallelization bottleneck

Post-Moore:

+ Specialization bottleneck

7))
-
©,

f
th

ica

Appl
Algor

4096 x 4096 matrix multiply

Running Absolute
Implementation time (s) GFLOPS speedup
Python 25,552.48 0.005 1
Java 2.872.68 0.058 11
C 542.67 0.253 47
Parallel loops 69.80 1.969 366
Parallel divide-and-conquer 3.80 36.180 6,727
+ vectorization 1.10 124.914 23,224
+ AVX intrinsics 0.41 337.812 62,806

Leiserson et al. There’s Plenty Of Room At The Top

MaxFlow over time

1,000,000,000
100,000,000
10,000,000
1,000,000

100,000
Relative
Performance
10,000

1,000
100

10

1975 1980 1985 1990 1995 2000 2005 2010 2015 Le|SerSOn
Year et a|

SuRFs speed up range queries in RocksDB

-~ 10 SuRF

/2]

s

o =

s

~ 6

)

2

'S, 4

3 5 —No Filter/
= Bloom Filter
= 0

10 20 30 40 50 60 70 80 90 99
Percent of queries with empty results
16

2018--?: Putting Heterogeneity On The Programmer

The trend in architecture over the last decade:
increasingly shift pain to the programmer.

This will get worse. (No alternative yet)

Applications

Narrow Waists

—!

Heterogenous, experts-only Hardware

Waists are emerging: ML example

Applications

DNN graph definition

TensorFlow TensorRT - Android NNAPI Apple CoreML

TPUs v1-3, EdgeTPU, Neural Compute Stick, A12 Bionic, Intel FPGA DLIA, GPUs, x86, ARM,

Today’s specialization

Machine Learning (‘nuff said)
Network cards
GPUs

FPGAs

On-CPU functions (video codec, crypto, more)

NICs: Fabrics, Stack Bypass, and RDMA

Extensive - and nuanced -
processing architecture on-NIC.

(Different from Smart NICs)

CPU

NIC

Core

Core

L3

Cache

PCI Express

1. Small ~2 MB cache

2. Multiple processing units

FaSST. Fabric-optimized Transactions with RPCs
ve[FaRNE: FaSST uses

o)
FaRM [sosp 15] % ConfseE.3 16 50% fewer h/w resources

DrTM+R [Eurosys 16] 1x ConnectX-3 10 vs DrTM+R: FaSST makes

FaSST 1x ConnectX-3 8 no data locality assumptions
TATP benchmark SmallBank benchmark
(80% rdonly txns) (85% rw txns)
3.6 2 16

Tput/machine
(M/s)

O = N W N

Tput/machine
(M/s)

0
FaRM FaSST DrTM+R FaSST

25

eRPC: Generalized RPC for fabrics

Replicated PUT latency:
Raft+eRPC vs others

Measurement System Median 99% @

Measured at client NetChain 9.7 us N/A
e SoHs 6.3ps RPC?7?

ZabFPGA 3.0 us 3.0 us

eRPC 3.1us 3.4us Lﬁ

What is the right, general
abstraction for using
datacenter networks?

Measured at leader

eRPC requires applications be designed with its needs in mind;
RAFT is low-level, easy to modify;
Real applications would likely take a lot of work.

Stack bypass matters more than RDMA

For network-intensive applications:

- OS network stack bypass: > 10x perf gains
- RDMA vs messaging: ~1x
- PCI bus transactions are key optimization goal

Stack bypass is great, but messes aren’t

Client
. Service

Service

nWwnw>»TVT<T
\
Y

DB
Driver ,/ DB

GPU Cautionary Tale (a little old)

CPU/GPU Packet Processing

>.<:>

> 10x computing power
~ 4x memory bandwidth |

Rethink GPU advantages

Packet forwarding usually not CPU intensive

e bandwids

Most router applications not memory BW intensive

Memory latency hiding! /

Doing it right on CPU...
B GPU acceleration I CPU code optimization (G-Opt)

W b

Factor speedup
N

IPv4 L2 Switch IPv6

FPGA Cautionary Tale

A SIGMOD 2017 paper proposes using FPGAs for database pattern matching
select count(*) from test where regex(name, ‘Strasse|Str’);

End-to-end regex operator time for 10 Million records

4000 m Q1 = ‘(Strasse|Str\.) .* (8[0-9]{4})’
m Q2 = ‘[0-9]+(USD|EUR|GPB)”’

3000 “Q3 = c[A-za-z]{3}\:[0-9]{4}’
n
e
S 2000
ki
E

1000

0

FPGA

34

So we optimized the CPU baseline...

1. Replace NFA with DFA

a. Reduces matching complexity. DFA too big for FPGA, but fits in CPU cache.
Used an off-the-shelf CPU accelerated library, Intel's HyperScan.
(It's amazing and has some serious vector wizardry!)

2. Avoid dynamic memory allocation
a. Reduces CPU cycles
b. Reduces cache misses

3. Process a batch of records instead of processing them one by one
a. Reduce CPU pipeline stalls due to memory dependency .
Xin Zhang(CMU)
Anuj Kalia (CMU)
Michael Kaminsky (Intel Labs),

David Andersen (CMU) 3°
e

Ql:regex(name, ‘(Strasse|Str\.) .* (8[0-9]1{4})’;

End-to-end performance gzt el
2. End-to-end regex operator time in ms (10 Million records)

End-to-end regex operator time for 10 Million records
End-to-end regex operator time for 10 Million records

4000] Q1

mQ2 = Q1

.l ():3 200 'l ():Z
= Q3

3000

2000 15

100

Milliseconds
Milliseconds

1000
50

. 0
CPU(hyperscan) CPU(bare-bones) FPGA CPU(hyperscan) CPU(bare-bones) —

36

Waists are kind of emerging: ML example

Applications

DNN graph definition

TensorFlow TensorRT - Android NNAPI Apple CoreML

How to create kernels? How to specialize DNN to device?

TPUs v1-3, EdgeTPU, Neural Compute Stick, A12 Bionic, Intel FPGA DLIA, GPUs, x86, ARM,

Wither DBs”?

What role do databases play in mediating the messy, heterogenous future?
- We're already seeing a lot of GPU-accelerated DBs

v Alocus for concentrated optimization, where many apps offload most
work to the DB system

- Not the only locus, and we’re in an “APIs flowering” phase

Moving up a level, in a diverse and data-driven world, we must manage
diverse programming abstractions against very large data sets. Rather
than expecting to develop “the” data analysis language for Big Data,
perhaps by extending SQL or another popular language, we must let users
analyze their data in the medium they find most natural

Beckman Report, 2013

Standard TensorFlow format

Another approach is to convert whatever data you have into a supported format. This approach makes it easier to mix
and match data sets and network architectures. The recommended format for TensorFlow is a TFRecords file containing

DatalLoader and Postgres (or other SQL) an option? |porcn;

13d
Hi,
I’'m trying to keep things in a postgres database, because - well, it's complicated.

Is there anyone who’s done this in an efficient manner with the DatalL.oader and Dataset classes? I’'m relatively
proficient at Google-Fu, and no dice so far.

Develope.;;‘“;;
Developers',
Developers

SQL — MapReduce | BigTable — Flume — Spanner (SQL)

As in ML, so in DBs

- SQL isn’'t enough
- UDFs provide a pathway, but how to specialize UDFs for device? Standardize on UDFs?
- But will also be a mismatch at a high level
- Same language + compiler research underway for ML will be needed here...

- Need to aim for reasonable # of APIls to support diverse applications
“Strive to create a world where it is easy to write fast code” [Leiserson]
- Balancing expressiveness and constraints is terribly hard

- How do databases play nicely with other emerging waists (ML, network,
video, and the ones we haven'’t thought of yet)?

DB community / academia staying relevant

The default path: Big industry will dominate
Why?

- Vertically integrated, know needs well, can target cost reduction and perf
improvements where they need. Large enough to fab.

But:

- FAAAAM [fb, aapl, amzn, goog, baba, msft] innovations will trickle,
But their priority order sometimes differs
[scale, vert. integrated, expert programmers]
[Recent Abadi blog post about Spanner]

Heterogenous hardware
Need for across-the-board improvements
In algos, languages, implementations

Incredible opportunity to create the next bridge
APIs and systems.

