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2018:

Moore’s Law

Moore’s Zombie



Intel’s Philosophy Prior to 2005
Transparently make existing code run faster

How?

- Higher frequency
- Dennard scaling:  Smaller features let you reduce voltage & current
- Higher power

- Better IPC
- Faster multipliers, branch prediction, prefetching, … architectural magic.

2005:  End of Dennard scaling.



2005-2018:  Putting Parallelism on the Programmer

448x







Technology scaling over time



Technology Scaling in 2018
2010:  Intel 32nm
2012:  Intel 22nm           +2 years
2015:  Intel 14nm           +3 years
2H 2019:  Intel 10nm?   +4 years?

Intel 7nm, TSMC 5nm use Extreme Ultraviolet Lithography:

2007:  ”EUVL may be in pilot production [in 2010] 
                       and in large-scale production [in 2012]”
2016:  “EUV may be ready by 2018”
2018:  “EUV is currently being developed for high volume use by 2020"



Moore’s law as we know it is dead
The cadence is dead.

We’re not done with all improvements, but they will be slower coming and 
increasingly irregular.

This is Moore’s Zombie.



The “More than Moore” approach
“Functional diversification of semiconductor-based devices”
   - Integration of sensors, RF, MEMS, quantum?, storage

                             

Flowering of application-specific chips



Google TPU v1
30-80x TOPS/Watt vs
2015 CPUs and GPUs

8GiB DRAM

8-bit fixed point

256x256 MAC unit



ASICs in the wild at gigacorps
Google:  TPUv1, TPUv2, TPUv3

Amazon:  Hypothesized AI chip,
                Custom VM controller,
                Custom switching chip

Apple:  Its own ARM series;
            Custom AI chip

Vertically-integrated industry giants 
creating workload-optimized ASICs





We will have more advances - but they’re bumpy
Intel “Apache Pass” persistent memory

(likely a phase-change memory)

… a one-time advance.

Optical interconnects would
Improve DRAM bandwidth/reach
… a one-time advance.



% of
cycles

Implementation Complexity

Cryptographic

Machine Learning
Graphics & HPC

DB primitives?
   - Some already handled by GPUs, crypto

Video encode/decode

Diminishing 
Returns

Network?



Can’t outrun Amdahl
Moore:

Most CPU functions got faster simultaneously;
Memory density scaled too!
-->  I/O primary bottleneck to work around.

Multicore:
+ Parallelization bottleneck

Post-Moore:

+ Specialization bottleneck



Applications
Applications

Algorithms

Hardware



4096 x 4096 matrix multiply

Leiserson et al. There’s Plenty Of Room At The Top



MaxFlow over time

Leiserson 
et al.





2018--?:  Putting Heterogeneity On The Programmer
The trend in architecture over the last decade:

increasingly shift pain to the programmer.  

This will get worse.  (No alternative yet)



Applications

Heterogenous, experts-only Hardware

Narrow Waists



Waists are emerging:  ML example

DNN graph definition
Android NNAPITensorFlow       TensorRT Apple CoreML

TPUs v1-3, EdgeTPU, Neural Compute Stick, A12 Bionic, Intel FPGA DLIA, GPUs, x86, ARM, ....

Applications



Today’s specialization
Machine Learning (‘nuff said)

Network cards

GPUs

FPGAs

On-CPU functions (video codec, crypto, more)



NICs:  Fabrics, Stack Bypass, and RDMA

Extensive - and nuanced - 
processing architecture on-NIC.

(Different from Smart NICs)



FaSST:  Fabric-optimized Transactions with RPCs



eRPC:  Generalized RPC for fabrics
Replicated PUT latency:  
Raft+eRPC vs others

RPC???

eRPC requires applications be designed with its needs in mind;
RAFT is low-level, easy to modify;
Real applications would likely take a lot of work.

What is the right, general 
abstraction for using 
datacenter networks?



Stack bypass matters more than RDMA
For network-intensive applications:

- OS network stack bypass:  > 10x perf gains
- RDMA vs messaging:  ~1x
- PCI bus transactions are key optimization goal



Stack bypass is great, but messes aren’t
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GPU Cautionary Tale (a little old)



Rethink GPU advantages

Higher computational power

Packet forwarding usually not CPU intensive

Higher memory bandwidth

Most router applications not memory BW intensive

Memory latency hiding!  



Doing it right on CPU...



FPGA Cautionary Tale
A SIGMOD 2017 paper proposes using FPGAs for database pattern matching

aper
= ‘(Strasse|Str\.) .* (8[0-9]{4})’

= ‘[0-9]+(USD|EUR|GPB)’

= ‘[A-Za-z]{3}\:[0-9]{4}’
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select count(*) from test where regex(name, ‘Strasse|Str’);



So we optimized the CPU baseline...
1. Replace NFA with DFA

a. Reduces matching complexity.  DFA too big for FPGA, but fits in CPU cache.
Used an off-the-shelf CPU accelerated library, Intel’s HyperScan.  
(It’s amazing and has some serious vector wizardry!)

2. Avoid dynamic memory allocation
a. Reduces CPU cycles
b. Reduces cache misses

3. Process a batch of records instead of processing them one by one
a. Reduce CPU pipeline stalls due to memory dependency
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End-to-end performance
2. End-to-end regex operator time in ms (10 Million records)

Q1:regex(name, ‘(Strasse|Str\.) .* (8[0-9]{4})’;
Q2:regex(name, ‘[0-9]+(USD|EUR|GPB)’);
Q3:regex(name ‘[A-Za-z]{3}\:[0-9]{4}’);
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Waists are kind of emerging:  ML example

DNN graph definition
Android NNAPITensorFlow       TensorRT Apple CoreML

TPUs v1-3, EdgeTPU, Neural Compute Stick, A12 Bionic, Intel FPGA DLIA, GPUs, x86, ARM, ....

Applications

How to create kernels?    How to specialize DNN to device?



Wither DBs?
What role do databases play in mediating the messy, heterogenous future?

- We’re already seeing a lot of GPU-accelerated DBs

✓ A locus for concentrated optimization, where many apps offload most 
work to the DB system

- Not the only locus, and we’re in an “APIs flowering” phase



Moving up a level, in a diverse and data-driven world, we must manage 
diverse programming abstractions against very large data sets. Rather 
than expecting to develop “the” data analysis language for Big Data, 
perhaps by extending SQL or another popular language, we must let users 
analyze their data in the medium they find most natural

Beckman Report, 2013



[Pytorch]



SQL → MapReduce | BigTable → Flume → Spanner (SQL)



As in ML, so in DBs
- SQL isn’t enough

- UDFs provide a pathway, but how to specialize UDFs for device?  Standardize on UDFs?
- But will also be a mismatch at a high level
- Same language + compiler research underway for ML will be needed here…

- Need to aim for reasonable # of APIs to support diverse applications
“Strive to create a world where it is easy to write fast code” [Leiserson]
 - Balancing expressiveness and constraints is terribly hard

- How do databases play nicely with other emerging waists (ML, network, 
video, and the ones we haven’t thought of yet)?



DB community / academia staying relevant
The default path:  Big industry will dominate 

Why?

- Vertically integrated, know needs well, can target cost reduction and perf 
improvements where they need.  Large enough to fab.

But:

- FAAAAM [fb, aapl, amzn, goog, baba, msft] innovations will trickle,
But their priority order sometimes differs 
[scale, vert. integrated, expert programmers]
[Recent Abadi blog post about Spanner]



Heterogenous hardware
     Need for across-the-board improvements
         In algos, languages, implementations

Incredible opportunity to create the next bridge 
APIs and systems.


