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Query Optimization is an Old Problem
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Query Optimization Is Still Hard Today
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Two Key Query Optimization Observations

Leis et al observe (among other) that:

• Accuracy of cardinality estimation is critical to good plans
• Especially hard in the presence of correlations between tables

• Risk associated with certain plan choices should be considered
• E.g., nested-loops are seldom beneficial without an index
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Active Research Areas
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Recent Success of Deep Learning

7Examples & Images (except indexing) from: https://machinelearningmastery.com/inspirational-applications-deep-learning/

Black-and-white im age colorization Text and im age translation

Object detection and classification

Autom atic gam e playing Indexing! [SIGM OD’18]



Our Vision
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Can we rethink query optimization in the context of deep learning?
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Can Deep Learning Help Query Opt?

• Can we automatically learn a query (subquery) representation?
• That suffices to predict the query cardinality?
• That can serve to derive the representation for more complex queries?

• Can we use the learned representation to find good plans?
• Combine it with reinforcement learning to incrementally build plans
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A Deep Learning Model for Query Optimization
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Learning Subquery Representations
• Use deep learning to capture properties of intermediate relations
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A Recursive Function
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Learning the Recursive Function
• One approach is to train a recurrent neural network (RNN)
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Preliminary Experiments
• Synthetic database generated using the PDGF Framework

• 8 relations (1 fact table and 7 dimension tables)
• Data size ~1.6 GB

• 8k random queries
• 6k for training/2k for testing

• Select-join queries
• All queries have 5 selection and/or joins

• Implementation in Tensorflow
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• Predictions compared to Postgres estimates
• First action is either a selection or a join
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Results

First Action Second Action



• Need to improve predictions for later actions
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Can Deep Learning Help Query Opt?

• Can we automatically learn a query (subquery) representation?
• That suffices to predict the query cardinality?
• That can serve to derive the representation for more complex queries?

• Can we use the learned representation to find good plans?
• Combine it with reinforcement learning to incrementally build plans
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How to Find Good Query Plans?
• Use Subquery Representations with Reinforcement Learning

• Given: A subquery representation and a set of possible actions, 
which is best?   
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Reinforcement Learning
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Reinforcement Learning with 
Subquery Representations

22

state 0

Database

state 2state 1

action 2: join operation (S,T) action 1: join operation (U,T) 

reward: -cardinality

TS

⋈
TU

⋈

Q(s0,a2)Q(s0,a1)

"



Q-Learning

23

state 0

Database

state 2state 1

TS

⋈
TU

⋈

Q(s0,a2)Q(s0,a1)

Value-based iteration

state 6

Q(s2,a2)

state 4

Q(s1,a1)
TS

⋈
⋈

Ustate 5

Q(s2,a1)

TS

⋈
⋈

R

TU

⋈
⋈

S

"



Q-Learning
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Project Status

• Short paper outlines the vision: Learning State Representations for Query 
Optimization with Deep Reinforcement Learning. Jennifer Ortiz, Magdalena 
Balazinska, Johannes Gehrke, and S. Sathiya Keerthi
DEEM Workshop @ SIGMOD 2018

• Experimenting with different approaches for both components of the problem

• Expect more results soon
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Related Work
• The Case for Learned Index Structures. Kraska, et. al.

• Use models to replace/enhance indexes on single attributes

• Deep Reinforcement Learning for Join Order Enumeration 
Marcus, et. al.

• Using RL with Postgres estimates as the reward. 
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Conclusion

• Query optimization remains a hard problem
• Can we use deep learning and reinforcement learning to improve

• Cardinality estimation?
• Query plan selection?

• DeepQuery: Deep reinforcement learning for query optimization
• Learn subquery representations through a recursive function
• Use reinforcement learning for join enumeration
• Preliminary results are promising
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