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Query Optimization is an Old Problem
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ABSTRACT: In a high level query and data
manipulation language such as SQL, requests
are stated non-procedurally, without refer-
ence to access paths. This paper describes
how System R choooes access paths for both
simple (single relation) and complex que-
ries (such as joins), given a user specifi-
cation of desired data a3 a boolean
expression of predicates. System R is an
experimental databane management oystem
developed to carry out research on the rela-
tional model of data. System R wan deasigned
and built by members of the IEM San Joae
Research Laboratory.

1. Introduction

Syatem R i9 an experimental database man
agement osystem based on the relational
model of data which has been under develop-
ment at the IBM San Jone Reaearch Laboratory

San Jose, California 95193

accens path for ecach table in the SQL state-
ment. Of the many possible choicesa, the
optimizer chooses the one which minimizes
*total access cost® for performing the
entire statement.

This paper will address the issues of
access path pelection for queriens,
Retrieval for data manipulation (UPDATE,
DELETE) is treated gsimilarly. Section 2
will describe the place of the optimizer in
the procensing of a SQL statement, and sec
tion 3 will describe the storage component
accens paths that are available on a single
physically stored table. In section 4 the
optimizer cont formulas are introduced for
single table querien, and section % dis
cunses the joining of two or more tables,
and their corresponding conts. Nested que-
ries (queries in predicates) are covered in
oection 6.



Query Optimization Is Still Hard Today

How Good Are Query Optimizers, Really?
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ABSTRACT b
Finding a good join order is crucial for query performance. In this “".d""‘%“-" cost M/N \T
paper, we introduce the Join Order Benchmark (JOB) and exper- SELECT ... estimation model 7 N
imentally revisit the main components in the classic query opti- FROM R,S,T s
mizer architecture using a complex, real-workld data set and realistic WHERE ... plan space R
multi-oin quenes. We investigate the quality of industnial-strength — X 0
cardinality estimators and find that all estimators routinely produce ST
large ermors. We further show that while estimates are essential for

finding a good join order, query performance is unsatisfactory if
the query engine relies 100 heavily on these estimates. Using an-
other set of expenments that measure the impact of the cost model,
we find that it has much less influence on query performance than
the cardinality estimates. Finally, we investigate plan enumera-
tion techniques comparing exhaustive dynamic programming with
heunstic algonthms and find that exhaustive enumeration improves
performance despite the sub-optimal cardinality estimates.

Figure 1: Traditional query optimizer architecture

o How important is an accurate cost model for the overall query
optimization process?

e How large does the enumerated plan space need to be?



Two Key Query Optimization Observations

Leis et al observe (among other) that:

« Accuracy of cardinality estimation is critical to good plans
« Especially hard in the presence of correlations between tables

* Risk associated with certain plan choices should be considered
* E.g., nested-loops are seldom beneficial without an index
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Recent Success of Deep Learning

o o T nd im ranslation
Black-and-white image colorization extand image translatio

Mdork '
choklad | CHOCOLATE

Indexing! [SIGMOD’18]

Automatic game playing

a) B-Troe Index (b) Learned Index
K L
Model
BTree (e.g. NN)
—————
" [

oo 0 . parrr o BN e S~ I
7 ™ F ¥ ¥

The Case for Learned Index Structures

Examples & Images (except indexing) from: https://machinelearningmastery.com/inspirational-applications-deep-learning/

EdH Chi rey D Neokls Poly ot



Our Vision

Can we rethink query optimization in the context of deep learning?

-
Data
S|

Query Plan

-

SQL Query



Our Vision

Can we rethink query optimization in the context of deep learning?

Deep Learning Query Plan
Model

How to encode
data and a

Data g

query?
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Can Deep Learning Help Query Opt?

« Can we automatically learn a query (subquery) representation?
 That suffices to predict the query cardinality?
» That can serve to derive the representation for more complex queries?

 Can we use the learned representation to find good plans?
« Combine it with reinforcement learning to incrementally build plans

10



A Deep Learning Model for Query Optimization
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Learning Subquery Representations

« Use deep learning to capture properties of intermediate relations
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A Recursive Function

Prior subquery

representation N\ 5 Nobserved

Query
Operation

Observed
Variables

Use cardinality as an

observed variable

13



Learning the Recursive Function

* One approach is to train a recurrent neural network (RNN)

Relation Encoding
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Preliminary Experiments

» Synthetic database generated using the PDGF Framework
« 8 relations (1 fact table and 7 dimension tables)
* Data size ~1.6 GB

8k random queries

* 6k for training/2k for testing
« Select-join queries

« All queries have 5 selection and/or joins
* Implementation in Tensorflow

test
—— fraining

normalized loss




Relative Error

Results

 Predictions compared to Postgres estimates
* First action is either a selection or a join
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Results

* Need to improve predictions for later actions
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Can Deep Learning Help Query Opt?

« Can we automatically learn a query (subquery) representation?
 That suffices to predict the query cardinality?
» That can serve to derive the representation for more complex queries?

« Can we use the learned representation to find good plans?
« Combine it with reinforcement learning to incrementally build plans

18



How to Find Good Query Plans?

 Use Subquery Representations with Reinforcement Learning

 Given: A subquery representation and a set of possible actions,

which is best?
Action 1
Action 2
Subquery P, X B
Representation .
Action 3
X C

State t+1




Reinforcement Learning

Reward
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Reinforcement Learning: Q-learning

Reward

reward

Q(s3,a2)

action 2

reward

Observe State State 1 &,al) Q(s2,a2)

. action 2
action 1

reward

max J(s;.,,a)
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Reinforcement Learning with
Subquery Representations
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Project Status

 Short paper outlines the vision: Learning State Representations for Query
Optimization with Deep Reinforcement Learning. Jennifer Ortiz, Magdalena
Balazinska, Johannes Gehrke, and S. Sathiya Keerthi
DEEM Workshop @ SIGMOD 2018

 Experimenting with different approaches for both components of the problem

» Expect more results soon



Related Work

 The Case for Learned Index Structures. Kraska, et. al.
» Use models to replace/enhance indexes on single attributes

* Deep Reinforcement Learning for Join Order Enumeration

Marcys. el al

 Using RL with Postgres estimates as the reward.



Conclusion

* Query optimization remains a hard problem
« Can we use deep learning and reinforcement learning to improve

« Cardinality estimation?
» Query plan selection?

 DeepQuery: Deep reinforcement learning for query optimization

 Learn subquery representations through a recursive function
 Use reinforcement learning for join enumeration
* Preliminary results are promising
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