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The Case for Relational Artificial Intelligence

A New Technology Category
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What if | tell you

Databases should be Relational
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Not Controversial but it used to be

productlines products orderdetalls

SUPPLIERS

Navigational VS Relational

$63 Price Price Price
Amco .21 15 10.00

Fig. 1(a). A “Navigational” Database.

In the Navigational vs Relational DB wars of the 1980’s,
Navigational DB’s were the incumbent and Relational DBs were the underdog!
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-database

The Great Debate




Navigational Relational




Navigational

Charles Bachman

Weighing in with:
Turing Award for Databases
Integrated Data Store (IDS)
lllustrious career at GE and Honeywell

Argument:

Performance
(it’s impossible to implement the relational
model efficiently)

Programmers won’t get it
(Cobol programmers can’t possibly
understand relational languages)

E B EL

Ted Codd

Weighing in with:
Researcher at IBM

’ ]
- Argument:
4

<@ Separation of the What from the How
@ (Argument for declarativity)

Domain experts will get it
(and they are cheaper and more plentiful
than programmers)




SO WHO WON?
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Oracle (formerly Relational Software, Inc.)

= Launched RDBMS in 1979
= |POin 1986
= Current Market Cap: $190.6B




INGRES

IW GRES 2,000,000 Shares

Relational Technology, Inc.

Common Stock
The executive officers and directors of the Company and their ages as of March 31, 1988 ar«

as follows:

Name Age
Gary J. Morgenthaler ............. 39
Paul E. Newton................... 44
Nicholas Birtles................... 43
RobertHealy ..................... 45
Lawrence A. Rowe ............... 39
P. Michael Seashols .............. 42
William M. Smartt................. 45
Martin J. Sprinzen ................ 40
EugeneWong .................... 53
Robert C. Miller(1) ............... 44
Charles G. Moore(1)(2) .......... 44
Michael R. Stonebraker ........... 44
William H. Younger, Jr. (1)(2) .... 38

Goldman, Sachs & Co.

Ingres (formerly Relational Technology, Inc.)

= Launched RDBMS in 1981

= |PO’din 1988 (sold prematurely to ASK in 1989)

Position

Chairman of the Board, Chief Executive
Officer and Director

President, Chief Operating Officer and
Director

Vice President, International Operations
Vice President, Marketing

Vice President, Advanced Development
Vice President, Sales and Marketing

Vice President, Finance and Administration
and Chief Financial Officer

Vice President, Engineering

Secretary

Director

Director

Director

Director

Robertson, Colman & Stephens

The date of this Prospectus is May 17, 1988.
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RDBMS Popularity

DB-Engines Ranking May 2019
The DB-Engines Ranking ranks database management systems according to
their popularity. The ranking is updated monthly.

Relational DBMS
1. Oracle

Relational DBMS
2. MysQL

Relational DBMS
3. Microsoft SQL Server

Relational DBMS
4. PostgresSQL
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Analysts agree

Figure 1. Magic Quadrant for Operational Database Management Systems
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Why?
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What if | tell you

Business Intelligence should be Relational
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Not Controversial but it used to be

Product Location

NOLLY01
v

Sales

Jr MOLAP  vs  ROLAP rime |

TIME

ROLAP
MOLAP

In the Multidimensional (i.e. Tensor) vs Relational OLAP wars of the 1990’s,
MOLAP was the incumbent and ROLAP was the underdog!



+
wwtableau

Tableau Software

= Launched in 2002
= |POin 2013
= Current Market Cap: $11.6B
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Analysts agree

R

ABILITY TO EXECUTE
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Why?
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What if | tell you

Artificial Intelligence should be Relational

20
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What if | tell you

No way!!
Relational systems are too slow!

Tensors and linear algebra are the way we’ve always done it

TensorFlow

21
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| am here to tell you

Relational Artificial Intelligence is Inevitable

22
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Why?

Rest of the talk
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The Need for Speed

“We track about 47 different hardware startups that all have a unique approach” to accelerating Al.

Greg Brockman, CTO OpenAl, interviewed by Reid Hoffman, May 30, 2019

“13 private chip companies focused on the Al market have raised more than $1.2 billion in venture-capital funding”

- Barron’s article “Al Chip Market Will Soar to $34 Billion in Five Years”, Feb 20, 2019

“Today the job of training machine learning models is limited by compute, if we had faster processors we’d run bigger
models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements
of several orders of magnitude — 100x or greater.”

Greg Diamos, Senior Researcher, SVAIL, Baidu, From EE Times — September 27, 2016

24



Al’s biggest challenges are computational!

ACCURACY
Search for better
= Parameters
= Hyper parameters
= Features
= Models

Don’t make assumptions that
you don’t need to make (e.g.
i.i.d. assumption)
INTERPRETABILITY
Searching for models that are
accurate and interpretable is
harder than searching for

accurate models

Interpretation in terms of prior
knowledge and in language &
ontology that humans

understand

VERSATILITY
Reasoning and (generalized)
inference: From observations to

unknowns in any time period

Inference of any property in the
model (e.g., it’s just as easy to
infer price from sales as it is to
infer sales from price)

EXPLAINABILITY
Explainability typically implanted
via separate shadow models that

have to be learned

Explanation in terms of prior
knowledge and in language &
ontology that humans
understand

ROBUSTNESS
Many “big data” problems are
really a big collection of small
data problems

Overcome challenges with
small, incomplete, and dirty
data problems by
incorporating prior knowledge
and expertise

FAIRNESS
It’s not enough to exclude
gender, ethnicity, race, age, etc
as features to the models. Other
features might be correlated.

Prejudice is a computational
limitation: Reasoning about
each person vs reasoning about

the group

SELF-SUPERVISION
“The future will be self-
supervised” Yann LeCun

Build models of the world by
observing it and searching
model space for the models
that have the most
explanatory power

CAUSALITY

Understanding causality
beyond A/B testing

Computationally very

expensive

25
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The Path to Performance: Brawn

Constant factors — Do same amount of work faster (i.e., brawn)
* Latency hiding: Memory hierarchy and network latencies (e.g., in memory and near-data computing)
* Parallelization: SIMD, multi-core, accelerators (e.g., GPU, TPU, FPGA)

= Specialization: Specialize for workload (e.g., JIT compilation), specialize for data

26
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The Path to Performance: Brains and Brawn

Asymptotics — Do less work (i.e., brains)

* Specialize algorithm by exploiting problem structure
* Algebraic (e.g., groups, semi rings, rings)
* Combinatorial (e.g., fractional hypertree width)
 Statistical (e.g., samples and sketches)
* Geometric (e.g., fast multipole method)

* Solve similar but more tractable problem

* Approximation (with error bars)

27
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Brains

Do Less Work
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The relational model dominates data
‘management

= The last 40 years have witnessed massive adoption
of the relational model

* It’s hard to find any examples today of enterprises
whose data isn’t in a relational database

= Millions of human hours invested in building relational
models and populating them with data

= Relational databases are rich with knowledge
of the underlying domains that they model

* The availability and accuracy of large amounts of curated
data has made it possible for humans (BI)
and machines (Al) to learn from the past and to
predict the future
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What’s the first thing we do when we build predictive models?

Features

Feature extraction query ID yal X2 x3

We work hard to throw away

all relational structure (and

Examples

semi-structure) we worked so

hard to build

We end up throwing away

important domain

knowledge

that can help us build better
Al models
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The wastefulness does not end there

Training Samples

Features w/zero filling

iy

One-hot encoded features

MACHINE LEARNING

31



Revisit from first principles

Avoid materializing the join

Avoid filling in the zeros

Avoid one-hot encoding

Exploit relational structures to speed up learning
Ideally, train models faster than the time it takes to
produce the query output in the first place!
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What would a database do?

Features
1. Database

ID | x1 | x2 [ x3 | ... |y

OO
2. Feature extraction query

Examples

I s: Sufficient statistics generated from model 3. Model specification

spec and feature extraction query. (e.g., “degree 2 ridge regression”)
Computed via aggrefations
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Number of Aggregates Varies By Model Class

m Supervised

® Regression

Model # features # params

Linear regression n n+ 1
Polynomial regression O(nd) O(nd)
Factorization machines O(nd) O(nr)

# aggregates n: # input features
d: degree
e(n?) r: rank
O(n2d)
O(n2d)

e (Classification

Model # aggregates
Decision trees o(n) ©(nbh)

# features

m Unsupervised

Model # aggregates

K-means O(kn)
PCA O(kn?)

b: branching factor, h: depth
(data-dependent)

k: # clusters

34
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We Efficiently Compute Those Aggregates

All Products
Department

y

\

|

Class

v

!

Style

HiE]E]E

35
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Case Study: Retail dataset

v

store_id store_id
Dpcode date

area_sq it } «<{item _id
avghte inventory_units
distance_to_compl

distance_to_comp2

pcode item_id
population cateqgory
ethnicibes subcategory
households category_cluster
median_age price
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Case Study: Retail dataset

Relation Cardinality Degree
(# Tuples) (# k/v columns)

Inventory 84,055,817 3&1 2 GB
Items 5,618 1&4 129 KB
Stores 1,317 1&14 139 KB

Demographics 1,302 1&15 161 KB

Weather 1,159,457 2&6 33 MB

Total: 2.1 GB
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Case Study: Retail dataset — PostgreSQL & TensorFlow

* The design matrix is constructed by joining together all the relations

* Train a linear regression model to predict sales by item, store, date from all the other features

Cardinality (# of tuples)

Degree (# of columns)

Size

Time to compute in PostgreSQL

Time to export from PostgreSQL

Time to learn parameters with GD

84,055,817
44 (3 & 41)
23GB

217 secs

373 secs

> 12,000 secs

38
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Case Study: Retail dataset - comparison

Design matrix with

PostgreSQL/TensorFlow relationalAl
Time Size Time Size
Original -- 2.1GB -- 2.1GB
Join Tables 217 secs 23 GB -- =
Export DM 373 secs 23 GB - -
Aggregate = = 18 secs 37 KB
Parameter learning with 512 K secs _ 0.5 secs _
GD
Total >12.5 K secs 18.5 secs

Improvement (1t Model)

Every model after

> 676x faster 11x smaller
> 24,000x faster

39
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Does it work for all model classes or methods?

Supported methods include

Linear regression

Polynomial regression

Factorization machines

Decision trees

Linear SVM

Deep sum-product networks

Naive Bayes Classifier (discrete case)

Hidden Markov Model (discrete case)

(with more on the way)

K-Means & K-Median clustering

Gaussian Discriminant Analysis

Linear Discriminant Analysis

Principal component analysis

Frequent item set mining (with Apriori algorithm)

Computing empirical mutual information and entropy

40
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So what?

Some context:

\ / \
\ ‘ ‘ \
Moore’s Law According to Nvidia
gives us 2x speedup GPUs give us a 2-10X
every 1.5 years speed-up over CPUs

In other words, GPUs give us ~5 year advantage

41
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So what?

What are the implications of

2-3 orders of magnitude speed-up?

42



Algorithms that exploit the domain structure

give usa 12-15 YEAR ADVANTAGE




Al’s biggest challenges are computational!

ACCURACY
Search for better
= Parameters
= Hyper parameters
= Features
= Models

Don’t make assumptions that
you don’t need to make (e.g.
i.i.d. assumption)
INTERPRETABILITY
Searching for models that are
accurate and interpretable is
harder than searching for

accurate models

Interpretation in terms of prior
knowledge and in language &
ontology that humans

understand

VERSATILITY
Reasoning and (generalized)
inference: From observations to

unknowns in any time period

Inference of any property in the
model (e.g., it’s just as easy to
infer price from sales as it is to
infer sales from price)

EXPLAINABILITY
Explainability typically implanted
via separate shadow models that

have to be learned

Explanation in terms of prior
knowledge and in language &
ontology that humans
understand

ROBUSTNESS
Many “big data” problems are
really a big collection of small
data problems

Overcome challenges with
small, incomplete, and dirty
data problems by
incorporating prior knowledge
and expertise

FAIRNESS
It’s not enough to exclude
gender, ethnicity, race, age, etc
as features to the models. Other
features might be correlated.

Prejudice is a computational
limitation: Reasoning about
each person vs reasoning about

the group

SELF-SUPERVISION
“The future will be self-
supervised” Yann LeCun

Build models of the world by
observing it and searching
model space for the models
that have the most
explanatory power

CAUSALITY

Understanding causality
beyond A/B testing

Computationally very

expensive

44
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Statistical Relational Learning

Relational generative models
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What else do we throw away when we build the feature matrix?

Feature extraction query

Translation to feature matrix
assumes each entity is
independent of the others (iid
assumption)

This is often not true - e.g.
related sku’s or related people

Examples

ID

x1

Features

X2

X3

46
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What if we don’t make the i.i.d assumption?

Features

ID [ x1T | x2 | x3|.. |y |ID

x1

X2

x3

Pairs of Entities

47
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All

What if we don’t make the i.i.d assumption?

Features

X1

X2

x3

X1

X2

x3

X1

X2

x3

48
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Statistical Relational Learning

m Statistical Relational models generalize PGMs in the same way that first order logic generalizes propositional logic
— they allow us to quantify over individuals/entities

e Allows for generalization (e.g. item, sub-class, class, dept, etc.)
e Ability to predict link-based patterns (e.g. inter item dependencies at sub-class, class, dept etc.)
e Models a varied number of observations for each object/relation. (e.g. friends, colleagues, etc.)

m Variants

e MLN in various flavors, PSL, RDN, BoostSRL, ProblLog, etc.

49
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Statistical Relational Learning

m Inference

e Unlike “traditional” methods where prediction is the input applied to the parameters of the model class, inference in SRL
requires expensive optimization or (approximate) integration over possible worlds

m Learning

e Unlike traditional learning algorithms, just one instance to learn from (the relational DB)

e Structure learning uses inference during each step

50
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Smoking and Quitting in Groups

Researchers studying a network of 12,067 people found that smokers and nonsmokers tended to cluster in groups of close friends and family
members. As more pecple quit over the decades, remaining groups of smokers were increasingly pushed to the periphery of the social network.

1971 A sample of 1,000 people from 'h 2000 Nearly three decades later, groups .o
oe,

the study includes many large of smokers tended to be smaller and

groups of smokers. ‘?. ? more isolated. '.s; .:'. 7
B £ Jf

%ﬂ Jr-AS

KEY
@® Male smoker « Male nonsmoker — Friendship,

marriage or family tie
s Moy Basd B e ek 0. Fem.ale Wer . ¢ Female nonsmoker. ag ¥
Dr. Nicholas A. Chrislakis: James H. Fowler Circle size is proportional to the number of cigarettes smoked per day. THE NEW YORK TIMES

Slide and example thanks to Pedro Domingos
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CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

person (x)

smokes (x) —-> person (x)

cancer (x) -> person (x)

friends(x, y) -> person(x), person(y)

52
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CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

person (x)

smokes (x) —-> person (x)

cancer (x) -> person (x)

friends (x, y) -> person(x), person(y)

Smoking causes cancer

Friends have similar smoking habits

53
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CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

person (x)

smokes (x) —-> person (x)

cancer (x) -> person (x)

friends (x, y) -> person(x), person(y)

Smoking causes cancer

Friends have similar smoking habits

wl smokes (x) —-> cancer (x)

w2 smokes (x), friends(x, y) —-> smokes (y)

54
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How do you make this tractable?

Approximate answer by converting into convex continuous optimization problem

Exploit group symmetry - lifted inference and approximate lifted inference

Avoid grounding altogether = in-database learning

Leveraging database semantics to avoid having to cluster -> in-database SPNs

Stay tuned

55
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Brawn

Do same amount of work faster
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The Path to Performance: Brawn

Constant factors — Do same amount of work faster (i.e., brawn)
* Latency hiding: Memory hierarchy and network latencies (e.g., in memory and near-data computing)
* Parallelization: SIMD, multi-core, accelerators (e.g., GPU, TPU, FPGA)

= Specialization: Specialize for workload (e.g., JIT compilation), specialize for data

57
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Motivation for implementation strategy

and

3 to 5 years building something similar in prior lives using C++ without ability to specialize for queries or data sets

58
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Julia in a nutshell

“Looks like Python, feels like LISP, runs like C”

Julia is fast, dynamic, optionally typed, and multi-dispatched

julia

m Feels like Lisp: Hygienic macros, code quoting, generated functions
m Runs like C: Specialization based on type inference, inlining, unboxing, LLVM to gen assembly

Source code >

o

Parse

»

Julia AST

v

v

Lower > Julia IR Compile \

\ 4

Machine ]
code

59
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Brains and Brawn: Systems Programming in Julia

= **Specialization**

= Query evaluation: Just-in-time compiled query plans

= Specialization

= Data types: e.g., fixed-precision decimals

60
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Just-in-Time Query Compilation

* Query compilation has only recently replaced interpretation in modern database systems

pushq %rbp

select A, B, C movq %rsp, %rbp
from R, S, T testq %rdi, %rdi
where .. ‘ negq %rdi

group by .. movq %rdi, %rax

* But, state of the practice is surprisingly primitive
* Typically: variations on template expansion in C/C++
* Ad-hoc methods to generate code: e.g., write a text file and invoke gcc
* Cumbersome engineering effort
= Better: use a language with proper staged metaprogramming support
* e.g., LegoDB using Scala/LMS/Squid

= Julia is very appealing from this point of view!

61
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Simplified TPC-H Q1: from SQL to Julia to Native Code

select

sum(l_extprice * (100 - 1 _discount) * (100 + 1 _tax))
from

lineitem

From SQL to Julia with
runtime code generation

sum = @
for i in 1l:size
sum += 1 extprice[i] * (100 - 1_discount[i]) * (100 + 1_tax[i])
end
return sum

From Julia to LLVM to
optimized x86-64 *

(*) The loop actually even gets vectorized, but we produced simpler
code here for presentation purposes

testq
jle
movq
movq
movq
xorl
xorl
L32:
mov1l
subq
movq
addq
imulq
imulq
addq
addq
cmpq
jne
retq
L71:

xorl
retq

%rcx, %rcx
L71

(%rdi), %rs
(%rsi), %r9
(%rdx), %rile
%edi, %edi
%eax, %eax

$100, %esi
(%r9,%rdi,8), %rsi
(%r10,%rdi,8), %rdx
$100, %rdx
(%r8,%rdi,8), %rsi
%rdx, %rsi

%rsi, %rax

$1, %rdi

%rdi, %rcx

L32

%eax, %eax

62
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Bl benchmark: vs Tableau/Hyper and Databricks Spark

TPC-H Scale Factor 100

Databricks (8 cores)

Databricks (16 cores) 574
|
Databricks (32 cores) 356
|
Databricks (64 cores) 259
|
Tableaw / Hyper (1 core) 212
|
Databricks (128 cores) 200

RelationalAl (1 core)

Time (s)

Spark numbers based on Databricks hardware and TPCH setup. Snowflake benchmarks closer to Spark than Hyper.

1144

1280
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Brains and Brawn Together: 3-Clique Graph benchmark vs Databricks Spark

Triangle Count on graph500 dataset

400
364.45717
300
g
&{
o 200
£
= 185.3177
— |
o
100
10.22252
0
Spark GraphFrames built-in  Spark GraphFrames RDD Delve

All benchmarks run on 1 core laptop.
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Brains and Brawn: Systems Programming in Julia

= Specialization

= Query evaluation: Just-in-time compiled query plans

= **Specialization**

= Data types: e.g., fixed-precision decimals

65
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Abstraction without regret by example: Fixed-precision decimals

Fixed-precision decimals are an important data type in database systems (e.g., for currencies), and avoid the
inexact representation problems of floats:

0.3333 + 0.33333
0.6666300000000001  # oOps

The Julia ecosystem has a FixedPointDecimal package for this purpose

T = FixedDecimal Inté64,5
FixedDecimal{Int64,5}

(0.3333) + T(0.33333)
FixedDecimal{Int64,5}(0.66663) # much better!

But... is this really going to be efficient enough? (Most database systems need special code to “compile
away” fixed precision decimal operations into simple operations on integers...)

66



Here’s the FixedDecimal datatype and its addition operation...

struct FixedDecimal T <: Integer, f <: Real

i
function Base. ( FixedDecimal{T, f} , i
n = (T)
if f >= 08 (n <0 || f<=n)
new T, £ (i % T)
else
(f, T, n)
end
end
end
+(x T, £,y T, £ ) where T, f =

(FD T, £, x.i+y.i)

... and lo, the Julia compiler produces a tiny # of ops on integers, just as required!

@code_native +(T(0.3333),T(0.33333))
decl %eax
movl (%esi), %eax
decl %eax
addl (%edi), %eax
retl

) where T, f

Moreover, this will be inlined
at the call site in any practical
example!
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m What about Parallelization and Accelerators?

» Manual » Parallel Computing O Edit on GitHub

Parallel Computing

For newcomers to multi-threading and parallel computing it can be useful to first
appreciate the different levels of parallelism offered by Julia. We can divide them in three
main categories :

1. Julia Coroutines (Green Threading)
2. Multi-Threading
3. Multi-Core or Distributed Processing

We will first consider Julia Tasks (aka Coroutines) and other modules that rely on the Julia
runtime library, that allow us to suspend and resume computations with full control of
inter-Tasks communication without having to manually interface with the operating
system's scheduler. Julia also supports communication between Tasks through operations
like wait and fetch. Communication and data synchronization is managed through
Channels, which are the conduits that provide inter-Tasks communication.

Julia also supports experimental multi-threading, where execution is forked and an
anonymous function is run across all threads. Known as the fork-join approach, parallel
threads execute independently, and must ultimately be joined in Julia's main thread to
allow serial execution to continue. Multi-threading is supported using the Base . Threads
module that is still considered experimental, as Julia is not yet fully thread-safe. In
particular segfaults seem to occur during \NO operations and task switching. As an up-to-
date reference, keep an eye on the issue tracker. Multi-Threading should only be used if
you take into consideration global variables, locks and atomics, all of which are explained
later.

In the end we will present Julia's approach to distributed and parallel computing. With
scientific computing in mind, Julia natively implements interfaces to distribute a process
across multiple cores or machines. Also we will mention useful external packages for
distributed programming like MPI.j1 and DistributedArrays.jl.

High-level GPU programming in Julia

Tim Besard
Computer Systems Lab
Ghent University, Belgium
Tim.Besard@elis.ugent.be

Abstract

GPUs are popular devices for accelerating scientifi

tions. However, as GPU code is usually written in low-level
languages, it breaks the abstractions of high-level languages

popular with scientific programmers. To overcome this, we.
present a for CUDA GPU ing in the
high-level Julia programming language. This framework com-
piles Julia source code for GPU execution, and takes care
of the necessary low-level interactions using modern code
generation techniques to avoid run-time overhead.
Evaluating the framework and its APIs on a case study
comprising the trace transform from the field of image pr
cessing, we find that the impact on performance is mi
mal, while greatly increasing programmer productivity. The
metaprogramming capabilities of the Julia language proved
invaluable for enabling this. Our framework significantly im-
proves usability of GPUs, making them accessible for a wide
range of programmers. It is available as free and open-source
software licensed under the MIT Li

Categories and Subject Descriptors  D.3.4 [Programming
L ssors—Code Compilers, Run-

]
time environments

Keywords  Julia, GPU, CUDA, LLVM, Metaprogramming

1. Introduction

GPUs can significantly speed up certain workloads. However,
targeting GPUs requires serious effort. Specialized machine
code needs to be generated through the use of a vendor-
supplied compiler. Because of the architectural set-up, initiat-
ing exccution on the coprocessor is often quite complex as
well. Even though the vendors try hard to supply toolchains
that support different developer environments and offer conve-
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nience functionality to lower the burden, they are essentially
playing catch-up.

While coprocessor hardware improves program efficiency,
high-level languages are becoming a popular choice because
of their improved programmer productivity. Languages such
as Python or Julia provide a user-friendly development en-
vironment. Low-level details are hidden from view, and sec-
ondary tasks such as dependency management and compiling
and linking are automatically taken care of.

For users of these high-level languages, jumping through
the many hoops of GPU development is often an exception-
ally large burden. A lot of low-level knowledge is required,
and many of the user-friendly abstractions break down. For
example, when using Python to target NVIDIA GPUs using
the CUDA toolkit, the developer needs to write GPU kemels
in CUDA C, and interact with the CUDA API in order to
compile the code, prepare the hardware and launch the kernel.
The situation is even worse for languages unsupported by the
CUDA toolkit, such as Julia, in which case there are only
superficial or no CUDA API wrappers at all.

Ideally, it should be possible to develop and execute
high-level GPU kernels without much extra effort: writing
kernels in high-level source code, while the interpreter for
that language takes care of compiling the necessary functions
to GPU machine code. Low-level details should be automated,
or at least wrapped in user-friendly language constructs.

‘This paper presents a framework to target NVIDIA GPUs,
and by extent other accelerators, directly in the Julia pro-
gramming language: Kernels can be written in high-level
Julia code. We also created high-level CUDA API wrappers
to support the natural use of the CUDA API from within
Julia. The framework provides a user-friendly GPU kernel
programming and execution interface that automates driver
interactions and abstracts GPU-specific details without intro-
ducing any run-time overhead. All code implementing this
framework is available as open-source code on GitHub.

In Section 2 we describe relevant technologies and the
motivation for our work. Section [ provides an overview
of our framework, cach component explained in detail in
Sections ftof8] Finally, we evaluate our work in Section [T}
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AUTOMATIC FULL COMPILATION OF JULIA PROGRAMS AND ML MODELS
TO CLOUD TPUS

Keno Fischer ' Elliot Saba '

ABSTRACT
Google’s Cloud TPUs are a promising new hardware architecture for machine leaning workloads. They have
powered many of Google’s milestone machine learning achievements in recent years. Google has now made

TPUs available for general use on their cloud platform and

of very recently has opend them up further to allow

use by non-TensorFlow frontends. We describe a method and implementation for offloading suitable sections of
Julia programs to TPUs via this new API and the Google XLA compiler. Our method is able to completely fuse
the forward pass of a VGG19 model expressed as a Julia program into a single TPU exccutable to be offloaded

to the device. Our method composes well with e;

sting

piler-based automatic diff i on

Julia code, and we are thus able to also automatically obtain the VGG19 backwards pass and similarly offload
it to the TPU. Targeting TPUs using our compiler, we are able to evaluate the VGG19 forward pass on a batch
of 100 images in 0.23s which compares favorably to the 52.4s required for the original model on the CPU. Our

implementation
any other Julia packages.

1 INTRODUCTION

One of the fundamental changes that has enabled the steady

Many fundamental techniques are decades old, but only
the compute power available in recent years was able to
deliver sufficiently good results to be interesting for real
world problems. A significant chunk of this compute power
has been available on Graphics Processing Units (GPUs)
whose vector compute capability, while originally intended
for graphics have shown to deliver very good performance
on the kind of matrix-heavy operations generally performed
in machine learning models.

world success of these approaches and of GPUs
pace in particular has set off a flurry of activity
among hardware designers to create novel accelerators for
machine learning workloads. However, while GPUs have a
relatively long history of support in software systems, this
gencrally does not extend to new, non-GPU accelerators and
developing software for these systems remains a challenge.

In 2017, Google announced that they would make their pro-
prictary Tensor Processing Unit (TPU) machine learning

'Julia Computing, Inc.. Correspondence to: Keno Fischer
<keno@,juliacomputing.com>.

Preliminary work.

less than 1000 lines of Julia, with no TPU specific changes made to the core Julia compiler or

accelerator available to the public via their cloud offering.
Originally, the use of TPUs was restricted to applications
written using Google's TensorFlow machine leaming frame-
work. Fortunately, in September 2018, Google opened up
access to TPUs via the IR of the lower level XLA (“Accel-
erated Lincar Algebra”) compiler. This IR is general pur-
pose and is an optimizing compiler for expressing arbitrary
computations of lincar algebra primitives and thus provides
a good foundation for targeting TPUs by non-Tensorflow
users as well as for non-machine learning workloads.

In this paper, we present initial work to compile general
Julia code to TPU using this interface. This approach s in
contrast to the approach taken by TensorFlow (Abadi et al.,
2016), which does not compile Python code proper, but
rather uses Python to build a computational graph, which
is then compiled. It is aesthetically similar to JAX (Frostig
et al,, 2018), which does aim to offload computations writ-
ten in Python proper by tracing and offloading high-level
array operations. Crucially, however, we do not rely on
tracing, instead we leverage Julia’s static analysis and com-
pilation capabilities to compile the full program, including
any control flow to the device. In particular, our approach
allows users to take advantage of the full expressiveness
of the Julia programming language in writing their models.
This includes higher-level features such as multiple dispatch,
higher order functions and existing libraries such as those
for differential equation solvers (Rackauckas & Nie, 2017)
and generic lincar algebra routines. Since it operates on pure
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Closing

One more time




Al’s biggest opportunities are relational!

ACCURACY
Search for better
= Parameters
= Hyper parameters
= Features
= Models

Don’t make assumptions that
you don’t need to make (e.g.
i.i.d. assumption)
INTERPRETABILITY
Searching for models that are
accurate and interpretable is
harder than searching for

accurate models

Interpretation in terms of prior
knowledge and in language &
ontology that humans

understand

VERSATILITY
Reasoning and (generalized)
inference: From observations to

unknowns in any time period

Inference of any property in the
model (e.g., it’s just as easy to
infer price from sales as it is to
infer sales from price)

EXPLAINABILITY
Explainability typically implanted
via separate shadow models that

have to be learned

Explanation in terms of prior
knowledge and in language &
ontology that humans
understand

ROBUSTNESS
Many “big data” problems are
really a big collection of small
data problems

Overcome challenges with
small, incomplete, and dirty
data problems by
incorporating prior knowledge
and expertise

FAIRNESS
It’s not enough to exclude
gender, ethnicity, race, age, etc
as features to the models. Other
features might be correlated.

Prejudice is a computational
limitation: Reasoning about
each person vs reasoning about

the group

SELF-SUPERVISION
“The future will be self-
supervised” Yann LeCun

Build models of the world by
observing it and searching
model space for the models
that have the most
explanatory power

CAUSALITY

Understanding causality
beyond A/B testing

Computationally very

expensive
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Why hasn’t this happened yet?

Al investment is focused on consumer Al

e Deep learning for images, speech, text = not relational data (yet)

Weaknesses of implementations of relational data management systems
e Abstraction leads to regret
e Can guarantee correct answer but can’t guarantee optimal path to get there

e Limitations on expressiveness, i.e. | can’t always ask the question | want to ask

Inertia — we have something that (sort of) works and we’re getting by. “you can’t expect us to rewrite all this code and retrain all
those data scientists and programmers”

e The number of models that haven’t been builtis >>> the number of models that have
® The number of future modelersis >>> the number of current modelers

e The number of domain experts is >>> the number of modelers and data scientists
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Why Now?

m We invented a new generation of (meta) algorithms that provide optimal solutions to large problem classes

e OOM more power for OOM better intelligence

m New generation of compilers that eliminate the cost of abstraction
e Allow us to specialize for workload

e Allow us to specialize for datasets

m Backlash against Hadoop (Map-Reduce), NoSQL, ML Frameworks — “the emperor has no clothes” is in the air
e Require you to sell your soul for scalability and/or performance

e Harder to program and operate
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What are we doing about it?
We built a system that gives you abstraction without regret

How are we going to do that?

e Constant factors

e Asymptotic factors
We’re going to meet people where they are:

e Tables and SQL if you are an analyst

e Tensors & Linear Algebra if you are a data scientist
We’re going to simplify and consolidate analytics:

e The building blocks for next gen Al (e.g. fast aggregation, factoring, multi-way evaluation, JIT, accelerators) building blocks for
all enterprise analytics: Bl, graphs, rules, planning, mathematical optimization.

We're going to stage it. We're going to consolidate and checkpoint our gains as we go.
e AutoML (with automatic feature engineering and relational statistics) -> Data scientist
e Data Management Systems for Analytics (aka data lakes) -> Data scientist
® Business Intelligence & Data Warehouses -> Analyst & End User

73



relationalAl

Product: Never have to start from scratch again

Data

General: e.g. Weather, Events, Consumer, Sentiment
Domain and industry specific: e.g. securities, crypto currencies
Competitor: e.g. price

Templates

Industry: retail, financial services, technology & software.

Problem class: (product) knowledge graphs, recommender systems, anomaly detection,
portfolio optimization

Tools

Data scientists: Notebooks (e.g. Jupyter)
Domain modelers: e.g. ontology editors (e.g. Jupyter, NORMA, Protégé)
Analysts: e.g. Bl and spreadsheets

Engine

Database
Al and Analytics
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Programming languages that support multiple dispatch rely on an expressive notion of subtyping to specify

method icability. In these I: type ions on method declarations are used to select, out of a

potentially large set of methods, the one that is most appropriate for a particular tuple of arguments. Julia is a

language for scientific computing built around multiple dispatch and an expressive subtyping relation. This

paper provides the first formal definition of Julia’s subtype relation and motivates its design. We validate our

i with an impl of our definition that we compare against the existing Julia

on a collection of 1d programs. Our subtype implementation differs on 122 subtype

tests out of 6,014,476. The first 120 differences are due to a bug in Julia that was fixed once reported; the

remaining 2 are under discussion.

1 INTRODUCTION

Multiple dispatch is used in languages such as CLOS [DeMichiel and Gabriel 1987), Perl [Randal
et al. 2003], R [Chambers 2014], Fortress [Allen et al. 2011], and Julia [Bezanson 2015]. It allows
to overload a generic function with multiple methods that implement the function
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for different type signatures; invocation of the function is resolved at run-time depending on the
actual types of the arguments. The expres-
sive power of multiple dispatch stems from
the way it constrains the applicability of a
method to a particular set of values. With it,
programmers can write code that is concise
and clear, as special cases, such as optimized versions of matrix multiplication, can be relegated
to dedicated methods. The inset shows three of the 181 methods implementing multiplication in
Julia’s standard library. The first method implements the case where a range is multiplied by a
number. The second method is invoked on generic numbers: it explicitly converts the arguments
to a common type via the promote function. The last method invokes native multiplication; its
signature has a type variable T that can be instantiated to any integer type.

For programmers, understanding multiple dispatch requires reasoning about the subtype relation.
Consider the infix call 3 * x. If x is bound to a float, only the second method is applicable. If,
instead, x is an integer, then two methods are applicable and Julia’s runtime must identify the most
specific one. Now, consider 3 * 4, with argument type Tuple{Int, Int}. The signature of the first
method is Tuple(Number, Range). Tuples are covariant, so the runtime checks that Int <: Number
and Int <: Range. Integers are subtypes of numbers, but not of ranges, so the first method is not
applicable, but the second is, as Tuple{Int, Int} <: Tuple{Number, Nunber}. The third method is
also applicable, as Tuple{Int,Int} is a subtype of Tuple(T,T} where T<:Union{Signed, Unsigned};
because there exists an instance of the variable T (namely Int) for which subtyping holds. As
multiple methods are applicable, subtyping is used to compare their signatures; it holds that
Tuple(T, T} where T <:Union{Signed, Unsigned) is a subtype of Tuple{Number, Number} because this
holds for all instances of the variable T. The call will be dispatched, as expected, to the third method.

#*(x::Number, r::Range)

*(x::Number, y: :Nusber)

*(x::T, y::T)

where T <: Union(Si gned, Unsigned) =
mul_int(x,y)

range(x*first(r),...)
*(promote(x,y)...)

lings of the ACM on ing L Vol. 1, No. CONF, Article 1. Publication date: January 2018.
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