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We are a mission-based team

Scientific Impact

Deep computer science and 
mathematical expertise from 
several technical 
communities:
• Database systems and 

theory
• Machine learning
• Programming languages
• Operations research

2K+ publications

90K+ citations
(35K+ in last 5 years)

37+ award-winning papers  
(3 this year!)

AI and ML
Industrial Impact

42
core team members

22
PhDs

6
former 

professors

$250M
direct value 

created

4
AI/ML 

companies 
Founded

16
faculty network

$2B
total value 

created
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The Case for Relational Artificial Intelligence
A New Technology Category
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Databases should be Relational

What if I tell you
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Navigational        vs         Relational

In the Navigational vs Relational DB wars of the 1980’s, 
Navigational DB’s were the incumbent and Relational DBs were the underdog!

Not Controversial but it used to be

5
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database

The Great Debate
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Navigational Relational

1974
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Navigational Relational

1974

Weighing in with:
§ Turing Award for Databases
§ Integrated Data Store (IDS)
§ Illustrious career at GE and Honeywell

Argument:
§ Performance 

(it’s impossible to implement the relational 
model efficiently)

§ Programmers won’t get it 
(Cobol programmers can’t possibly 
understand relational languages)

Charles Bachman
Weighing in with:
§ Researcher at IBM

Argument:
§ Separation of the What from the How

(Argument for declarativity)

§ Domain experts will get it 
(and they are cheaper and more plentiful 
than programmers)

Ted Codd
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Navigational Relational

Weighing in with:
§ Turing Award for Databases
§ Integrated Data Store (IDS)
§ Illustrious career at GE and Honeywell

Argument:
§ Performance 

(it’s impossible to implement the relational 
model efficiently)

§ Programmers won’t get it 
(Cobol programmers can’t possibly 
understand relational languages)

Charles Bachman
Weighing in with:
§ Researcher at IBM

Argument:
§ Separation of the What from the How

(Argument for declarativity)

§ Domain experts will get it 
(and they are cheaper and more plentiful 
than programmers)

Ted Codd

SO WHO WON?

1974
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Oracle (formerly Relational Software, Inc.)
§ Launched RDBMS in 1979
§ IPO in 1986
§ Current Market Cap: $190.6B
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Ingres (formerly Relational Technology, Inc.)

§ Launched RDBMS in 1981

§ IPO’d in 1988 (sold prematurely to ASK in 1989)

~MIIGRES 2,000,000 Sharer 

Relational Technology, Inc. 
Common Stock 

Of the 2,000,000 shares of Common Stock offered hereby, 1,500,000 shares are being sold by 
the Company and 500,000 shares are being sold by the Selling Stockholders. See "Principal and 
Selling Stockholders." The Company will not receive any of the proceeds from the sale of the shares 
by the Selling Stockholders. 

Prior to this offering, there has been no public market for the Common Stock of the Company. 
For the factors to be considered in determining the initial public offering price, see "Underwriting." 

See "Risk Factors" for a discussion of certain factors which should be considered by 
prospective purchasers of the Common Stock offered hereby. 

THESE SECURITIES HAVE NOT BEEN APPROVED OR DISAPPROVED BY THE 
SECURITIES AND EXCHANGE COMMISSION NOR HAS THE COMMISSION 

PASSED UPON THE ACCURACY OR ADEQUACY OF THIS PROSPECTUS. 
ANY REPRESENTATION TO THE CONTRARY IS A CRIMINAL OFFENSE. 

Initial Public Underwriting Proceeds to Proceeds to 
Offering Price Discount(1) Company (2) Selling Stockholders(2) 

. . . . . . . . . . . . . . .  Per Share. $1 4.00 $0.98 $1 3.02 $1 3.02 
. . . . . . . . . . . . . . . . .  Total (3) $28,000,000 $1,960,000 $1 9,530,000 $651 0,000 

(1 ) The Company and the Selling Stockholders have agreed to indemnify the Underwriters against 
certain liabilities, including liabilities under the Securities Act of 1933. 
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that certificates for the shares will be ready for delivery at the offices of Goldman, Sachs & Co., New 
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Goldman, Sachs & Co. Robertson, Colman & Stephens 

The date of this Prospectus is May 17, 1988. 

MANAGEMENT 
Executive Officers and Directors 

The executive officers and directors of the Company and their ages as of March 31, 1988 are 
as follows: 

Name - - Age Position 

Gary J. Morgenthaler . . . . . . . . . . . . .  39 
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Chief Executive Officer from January 1984 to early 1987, and as Executive Vice President and Chief 
Operating Officer from October 1980 to January 1984. Mr. Morgenthaler has served as a director of 
the Company since its inception. Prior to founding the Company, he was a consultant with 
McKinsey & Company, Inc., a management consulting firm. Mr. Morgenthaler holds a B.A. from 
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Mr. Newton has served as President and Chief Operating Officer and a director of the Company 
since early 1987. Between 1968 and early 1987, Mr. Newton was employed in various positions by 
UCCEL Corporation, a computer services and software company. Between 1984 and 1986, Mr. 
Newton served as Senior Vice President and General Manager of Software at UCCEL. Mr. Newton 
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DB-Engines Ranking May 2019
The DB-Engines Ranking ranks database management systems according to 
their popularity. The ranking is updated monthly.

Relational DBMS

1. Oracle

Relational DBMS

2. MySQL

Relational DBMS

3. Microsoft SQL Server

Relational DBMS

4. PostgresSQL

RDBMS Popularity

12
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Analysts agree

13
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Why?

14
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Business Intelligence should be Relational

What if I tell you

15
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MOLAP          vs          ROLAP

In the Multidimensional (i.e. Tensor) vs Relational OLAP wars of the 1990’s, 
MOLAP was the incumbent and ROLAP was the underdog!

Not Controversial but it used to be

16
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§ Launched in 2002
§ IPO in 2013
§ Current Market Cap: $11.6B

Tableau Software
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Analysts agree

18
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Why?

19
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Artificial Intelligence should be Relational

What if I tell you

20
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No way!! 

Relational systems are too slow!

Tensors and linear algebra are the way we’ve always done it

What if I tell you

21
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Relational Artificial Intelligence is Inevitable

I am here to tell you

22
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Why?
Rest of the talk
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“We track about 47 different hardware startups that all have a unique approach” to accelerating AI.

Greg Brockman, CTO OpenAI, interviewed by Reid Hoffman, May 30, 2019

“13 private chip companies focused on the AI market have raised more than $1.2 billion in venture-capital funding”

- Barron’s article “AI Chip Market Will Soar to $34 Billion in Five Years”, Feb 20, 2019

“Today the job of training machine learning models is limited by compute, if we had faster processors we’d run bigger 
models...in practice we train on a reasonable subset of data that can finish in a matter of months. We could use improvements 

of several orders of magnitude – 100x or greater.”

Greg Diamos, Senior Researcher, SVAIL, Baidu, From EE Times – September 27, 2016 

The Need for Speed

24
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AI’s biggest challenges are computational!

ACCURACY
Search for better
▪ Parameters
▪ Hyper parameters
▪ Features
▪ Models

Don’t make assumptions that 
you don’t need to make (e.g. 
i.i.d. assumption)

ROBUSTNESS
Many ”big data” problems are 
really a big collection of small 
data problems

Overcome challenges with 
small, incomplete, and dirty 
data problems by 
incorporating prior knowledge 
and expertise

INTERPRETABILITY 
Searching for models that are 
accurate and interpretable is 
harder than searching for 
accurate models

Interpretation in terms of prior 
knowledge and in language & 
ontology that humans 
understand

VERSATILITY
Reasoning and (generalized) 
inference: From observations to 
unknowns in any time period

Inference of any property in the 
model (e.g., it’s just as easy to 
infer price from sales as it is to 
infer sales from price)

FAIRNESS
It’s not enough to exclude 
gender, ethnicity, race, age, etc
as features to the models.  Other 
features might be correlated.

Prejudice is a computational 
limitation:  Reasoning about 
each person vs reasoning about 
the group

EXPLAINABILITY 
Explainability typically implanted 
via separate shadow models that 
have to be learned 

Explanation in terms of prior 
knowledge and in language & 
ontology that humans 
understand

CAUSALITY
Understanding causality 
beyond A/B testing

Computationally very 
expensive

SELF-SUPERVISION 
“The future will be self-
supervised” Yann LeCun

Build models of the world by 
observing it and searching 
model space for the models 
that have the most 
explanatory power
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Constant factors – Do same amount of work faster (i.e., brawn)

▪ Latency hiding: Memory hierarchy and network latencies (e.g., in memory and near-data computing)

▪ Parallelization: SIMD, multi-core, accelerators (e.g., GPU, TPU, FPGA)

▪ Specialization: Specialize for workload (e.g., JIT compilation), specialize for data

The Path to Performance: Brawn

26
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Asymptotics – Do less work (i.e., brains)

• Specialize algorithm by exploiting problem structure

• Algebraic (e.g., groups, semi rings, rings)

• Combinatorial (e.g., fractional hypertree width)

• Statistical (e.g., samples and sketches)

• Geometric (e.g., fast multipole method)

• Solve similar but more tractable problem

• Approximation (with error bars)

The Path to Performance: Brains and Brawn

27
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Brains
Do Less Work
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The relational model dominates data 
management

▪ The last 40 years have witnessed massive adoption
of the relational model 

▪ It’s hard to find any examples today of enterprises 
whose data isn’t in a relational database

▪ Millions of human hours invested in building relational 
models and populating them with data

▪ Relational databases are rich with knowledge
of the underlying domains that they model

▪ The availability and accuracy of large amounts of curated 
data has made it possible for humans (BI)
and machines (AI) to learn from the past and to
predict the future
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What’s the first thing we do when we build predictive models?

ID x1 x2 x3 ... y

⨝

We work hard to throw away
all relational structure (and 
semi-structure) we worked so 
hard to build

We end up throwing away 
important domain 
knowledge 
that can help us build better 
AI models

Features

Ex
am

pl
es

Feature extraction query

30
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The wastefulness does not end there

⨝

Features w/zero filling

Tr
ai

ni
ng

 S
am

pl
es

One-hot encoded features 

31
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The wastefulness does not end there

⨝

Features

Tr
ai

ni
ng

 S
am

pl
es

One-hot encoded features 

Revisit from first principles
o Avoid materializing the join
o Avoid filling in the zeros
o Avoid one-hot encoding
o Exploit relational structures to speed up learning
o Ideally, train models faster than the time it takes to 

produce the query output in the first place!
32
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What would a database do?

ID x1 x2 x3 ... y

⨝

Features

Ex
am

pl
es

2. Feature extraction query

s: Sufficient statistics generated from model 
spec and feature extraction query.  
Computed via aggrefations

3. Model specification 
(e.g., “degree 2 ridge regression”) 

1. Database

⨝

33
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Number of Aggregates Varies By Model Class
■ Supervised

● Regression

● Classification

■ Unsupervised

Model # features # params # aggregates

Linear regression n n + 1 Θ(n2)
Polynomial regression Θ(nd) Θ(nd) Θ(n2d)

Factorization machines Θ(nd) Θ(nr) Θ(n2d)

n: # input features
d: degree
r: rank

Model # features # aggregates

Decision trees Θ(n) Θ(nbh)
b: branching factor, h: depth 
(data-dependent) 

Model # aggregates

K-means Θ(kn)
PCA Θ(kn2)

k: # clusters

34
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All Products
Department

Class
Sub-class

Style
Item

We Efficiently Compute Those Aggregates 

35
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Case Study: Retail dataset

36
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Case Study: Retail dataset

Relation Cardinality 
(# Tuples)

Degree
(# k/v columns)

File size 
(csv)

Inventory 84,055,817 3 & 1 2 GB

Items 5,618 1 & 4 129 KB

Stores 1,317 1 & 14 139 KB

Demographics 1,302 1 & 15 161 KB

Weather 1,159,457 2 & 6 33 MB

Total: 2.1 GB

37



3838

Case Study: Retail dataset – PostgreSQL & TensorFlow

Cardinality (# of tuples) 84,055,817

Degree (# of columns) 44 (3 & 41)

Size 23 GB

Time to compute in PostgreSQL 217 secs

Time to export from PostgreSQL 373 secs

Time to learn parameters with GD > 12,000 secs

▪ The design matrix is constructed by joining together all the relations

▪ Train a linear regression model to predict sales by item, store, date from all the other features

38
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Case Study: Retail dataset - comparison

Design matrix with 
PostgreSQL/TensorFlow

relationalAI

Time Size Time Size

Original -- 2.1 GB -- 2.1 GB

Join Tables 217 secs 23 GB -- --

Export DM 373 secs 23 GB -- --

Aggregate -- -- 18 secs 37 KB

Parameter learning with 
GD

> 12 K secs -- 0.5 secs --

Total > 12.5 K secs 18.5 secs

Improvement (1st Model) > 676x faster      11x smaller
Every model after > 24,000x faster

39
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Does it work for all model classes or methods?

▪ Linear regression

▪ Polynomial regression

▪ Factorization machines

▪ Decision trees

▪ Linear SVM

▪ Deep sum-product networks

▪ Naive Bayes Classifier (discrete case)

▪ Hidden Markov Model (discrete case)

(with more on the way)

Supported methods include

40

▪ K-Means & K-Median clustering

▪ Gaussian Discriminant Analysis

▪ Linear Discriminant Analysis

▪ Principal component analysis

▪ Frequent item set mining (with Apriori algorithm)

▪ Computing empirical mutual information and entropy
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So what?

Moore’s Law
gives us 2x speedup 

every 1.5 years

According to Nvidia
GPUs give us a 2-10X 
speed-up over CPUs

Some context:

In other words, GPUs give us ~5 year advantage

41
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So what?

256x 
is 

8 doublings
(i.e., 2^8)

What are the implications of 
2-3 orders of magnitude speed-up?

256x 
is 

8 doublings
1024x 

is 
10 doublings

42
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So what?

256x 
is 

8 doublings
(i.e., 2^8)

What are the implications of 
2-3 orders of magnitude speed-up?

256x 
is 

8 doublings

1024x 
is 

10 doublings
(i.e., 2^10)

Algorithms that exploit the domain structure 
give us a 12-15 YEAR ADVANTAGE

43
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AI’s biggest challenges are computational!

ACCURACY
Search for better
▪ Parameters
▪ Hyper parameters
▪ Features
▪ Models

Don’t make assumptions that 
you don’t need to make (e.g. 
i.i.d. assumption)

ROBUSTNESS
Many ”big data” problems are 
really a big collection of small 
data problems

Overcome challenges with 
small, incomplete, and dirty 
data problems by 
incorporating prior knowledge 
and expertise

INTERPRETABILITY 
Searching for models that are 
accurate and interpretable is 
harder than searching for 
accurate models

Interpretation in terms of prior 
knowledge and in language & 
ontology that humans 
understand

VERSATILITY
Reasoning and (generalized) 
inference: From observations to 
unknowns in any time period

Inference of any property in the 
model (e.g., it’s just as easy to 
infer price from sales as it is to 
infer sales from price)

FAIRNESS
It’s not enough to exclude 
gender, ethnicity, race, age, etc
as features to the models.  Other 
features might be correlated.

Prejudice is a computational 
limitation:  Reasoning about 
each person vs reasoning about 
the group

EXPLAINABILITY 
Explainability typically implanted 
via separate shadow models that 
have to be learned 

Explanation in terms of prior 
knowledge and in language & 
ontology that humans 
understand

CAUSALITY
Understanding causality 
beyond A/B testing

Computationally very 
expensive

SELF-SUPERVISION 
“The future will be self-
supervised” Yann LeCun

Build models of the world by 
observing it and searching 
model space for the models 
that have the most 
explanatory power
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Statistical Relational Learning
Relational generative models
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What else do we throw away when we build the feature matrix?

ID x1 x2 x3 ... y

⨝

Translation to feature matrix 
assumes each entity is 
independent of the others (iid
assumption)

This is often not true - e.g. 
related sku’s or related people

Features

Ex
am

pl
es

Feature extraction query

46
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ID x1 x2 x3 ... y

Features

Pa
irs

 o
f E

nt
iti

es

ID x1 x2 x3 ... y

What if we don’t make the i.i.d assumption?

47
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Features

Al
l ID x1 x2 x3 ... y ID x1 x2 x3 ... y...ID x1 x2 x3 ... y

What if we don’t make the i.i.d assumption?

48
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■ Statistical Relational models generalize PGMs in the same way that first order logic generalizes propositional logic 
– they allow us to quantify over individuals/entities

● Allows for generalization (e.g. item, sub-class, class, dept, etc.)

● Ability to predict link-based patterns (e.g. inter item dependencies at  sub-class, class, dept etc.)

● Models a varied number of observations for each object/relation. (e.g. friends, colleagues, etc.)

■ Variants

● MLN in various flavors, PSL, RDN, BoostSRL, ProbLog, etc.

Statistical Relational Learning

49
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■ Inference

● Unlike “traditional” methods where prediction is the input applied to the parameters of the model class, inference in SRL 
requires expensive optimization or (approximate) integration over possible worlds

■ Learning

● Unlike traditional learning algorithms, just one instance to learn from (the relational DB)

● Structure learning uses inference during each step

Statistical Relational Learning

50
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CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)
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CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)

Smoking causes cancer
Friends have similar smoking habits
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CERTAIN KNOWLEDGE WITH INTEGRITY CONSTRAINTS

A logical Knowledge Base is a set of Integrity Constraints that define a set of possible worlds:

person(x)
smokes(x) -> person(x)
cancer(x) -> person(x)
friends(x, y) -> person(x), person(y)

w1 smokes(x) -> cancer(x)
w2 smokes(x), friends(x, y) -> smokes(y)

Smoking causes cancer
Friends have similar smoking habits
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Approximate answer by converting into convex continuous optimization problem

Exploit group symmetry à lifted inference and approximate lifted inference

Avoid grounding altogether à in-database learning

Leveraging database semantics to avoid having to cluster -> in-database SPNs

Stay tuned

How do you make this tractable?

55
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Brawn
Do same amount of work faster
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Constant factors – Do same amount of work faster (i.e., brawn)

▪ Latency hiding: Memory hierarchy and network latencies (e.g., in memory and near-data computing)

▪ Parallelization: SIMD, multi-core, accelerators (e.g., GPU, TPU, FPGA)

▪ Specialization: Specialize for workload (e.g., JIT compilation), specialize for data

The Path to Performance: Brawn

57
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Motivation for implementation strategy

and  💰
3 to 5 years building something similar in prior lives using C++ without ability to specialize for queries or data sets

58
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“Looks like Python, feels like LISP, runs like C”

Julia is fast, dynamic, optionally typed, and multi-dispatched
■ Feels like Lisp: Hygienic macros, code quoting, generated functions 
■ Runs like C: Specialization based on type inference, inlining, unboxing, LLVM to gen assembly

Julia in a nutshell

Source code Julia AST Julia IR

LLVM IR
Machine 

code

Parse Lower Compile

CompileExecute

59
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§ **Specialization**

§ Query evaluation: Just-in-time compiled query plans

§ Specialization

§ Data types: e.g., fixed-precision decimals

Brains and Brawn: Systems Programming in Julia

60
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Just-in-Time Query Compilation

▪ Query compilation has only recently replaced interpretation in modern database systems

▪ But, state of the practice is surprisingly primitive

• Typically: variations on template expansion in C/C++

• Ad-hoc methods to generate code: e.g., write a text file and invoke gcc

• Cumbersome engineering effort

▪ Better: use a language with proper staged metaprogramming support

• e.g., LegoDB using Scala/LMS/Squid

▪ Julia is very appealing from this point of view!

select A, B, C
from R, S, T
where …
group by …

pushq %rbp
movq  %rsp, %rbp
testq %rdi, %rdi
negq %rdi
movq %rdi, %rax
…

61
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Simplified TPC-H Q1: from SQL to Julia to Native Code

select
sum(l_extprice * (100 - l_discount) * (100 + l_tax))

from
lineitem

sum = 0
for i in 1:size

sum += l_extprice[i] * (100 - l_discount[i]) * (100 + l_tax[i])
end
return sum

testq %rcx, %rcx
jle L71
movq (%rdi), %r8
movq (%rsi), %r9
movq (%rdx), %r10
xorl %edi, %edi
xorl %eax, %eax

L32:
movl $100, %esi
subq (%r9,%rdi,8), %rsi
movq (%r10,%rdi,8), %rdx
addq $100, %rdx
imulq (%r8,%rdi,8), %rsi
imulq %rdx, %rsi
addq %rsi, %rax
addq $1, %rdi
cmpq %rdi, %rcx
jne L32
retq

L71:
xorl %eax, %eax
retq

From SQL to Julia with 
runtime code generation

From Julia to LLVM to 
optimized x86-64 *

(*) The loop actually even gets vectorized, but we produced simpler 
code here for presentation purposes
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BI benchmark: vs Tableau/Hyper and Databricks Spark

63Spark numbers based on Databricks hardware and TPCH setup.  Snowflake benchmarks closer to Spark than Hyper.
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Brains and Brawn Together:  3-Clique Graph benchmark vs Databricks Spark

64All benchmarks run on 1 core laptop.
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§ Specialization

§ Query evaluation: Just-in-time compiled query plans

§ **Specialization**

§ Data types: e.g., fixed-precision decimals

Brains and Brawn: Systems Programming in Julia

65



6666

Fixed-precision decimals are an important data type in database systems (e.g., for currencies), and avoid the 
inexact representation problems of floats:

The Julia ecosystem has a FixedPointDecimal package for this purpose

But… is this really going to be efficient enough?  (Most database systems need special code to “compile 
away” fixed precision decimal operations into simple operations on integers…)

julia> 0.3333 + 0.33333
0.6666300000000001   # oops

julia> T = FixedDecimal{Int64,5}
FixedDecimal{Int64,5}

julia> T(0.3333) + T(0.33333)
FixedDecimal{Int64,5}(0.66663) # much better!

Abstraction without regret by example: Fixed-precision decimals
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struct FixedDecimal{T <: Integer, f} <: Real
i::T

function Base.reinterpret(::Type{FixedDecimal{T, f}}, i::Integer) where {T, f}
n = max_exp10(T)
if f >= 0 && (n < 0 || f <= n)

new{T, f}(i % T)
else

_throw_storage_error(f, T, n)
end

end
end

+(x::FixedDecimal{T, f}, y::FixedDecimal{T, f}) where {T, f} =
reinterpret(FD{T, f}, x.i+y.i)

julia> @code_native +(T(0.3333),T(0.33333))
decl %eax
movl (%esi), %eax
decl %eax
addl (%edi), %eax
retl

Here’s the FixedDecimal datatype and its addition operation…

… and lo, the Julia compiler produces a tiny # of ops on integers, just as required!

Moreover, this will be inlined 
at the call site in any practical 

example!
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■ What about Parallelization and Accelerators?
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Closing
One more time
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AI’s biggest opportunities are relational!

ACCURACY
Search for better
▪ Parameters
▪ Hyper parameters
▪ Features
▪ Models

Don’t make assumptions that 
you don’t need to make (e.g. 
i.i.d. assumption)

ROBUSTNESS
Many ”big data” problems are 
really a big collection of small 
data problems

Overcome challenges with 
small, incomplete, and dirty 
data problems by 
incorporating prior knowledge 
and expertise

INTERPRETABILITY 
Searching for models that are 
accurate and interpretable is 
harder than searching for 
accurate models

Interpretation in terms of prior 
knowledge and in language & 
ontology that humans 
understand

VERSATILITY
Reasoning and (generalized) 
inference: From observations to 
unknowns in any time period

Inference of any property in the 
model (e.g., it’s just as easy to 
infer price from sales as it is to 
infer sales from price)

FAIRNESS
It’s not enough to exclude 
gender, ethnicity, race, age, etc
as features to the models.  Other 
features might be correlated.

Prejudice is a computational 
limitation:  Reasoning about 
each person vs reasoning about 
the group

EXPLAINABILITY 
Explainability typically implanted 
via separate shadow models that 
have to be learned 

Explanation in terms of prior 
knowledge and in language & 
ontology that humans 
understand

CAUSALITY
Understanding causality 
beyond A/B testing

Computationally very 
expensive

SELF-SUPERVISION 
“The future will be self-
supervised” Yann LeCun

Build models of the world by 
observing it and searching 
model space for the models 
that have the most 
explanatory power
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AI investment is focused on consumer AI

● Deep learning for images, speech, text à not relational data (yet)

Weaknesses of implementations of relational data management systems

● Abstraction leads to regret

● Can guarantee correct answer but can’t guarantee optimal path to get there

● Limitations on expressiveness, i.e. I can’t always ask the question I want to ask

Inertia — we have something that (sort of) works and we’re getting by. “you can’t expect us to rewrite all this code and retrain all 
those data scientists and programmers”

● The number of models that haven’t been built is   >>> the number of models that have

● The number of future modelers is   >>> the number of current modelers

● The number of domain experts is >>> the number of modelers and data scientists

Why hasn’t this happened yet?
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■ We invented a new generation of (meta) algorithms that provide optimal solutions to large problem classes

● OOM more power for OOM better intelligence

■ New generation of compilers that eliminate the cost of abstraction

● Allow us to specialize for workload

● Allow us to specialize for datasets

■ Backlash against Hadoop (Map-Reduce), NoSQL, ML Frameworks – “the emperor has no clothes” is in the air

● Require you to sell your soul for scalability and/or performance

● Harder to program and operate

Why Now?
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We built a system that gives you abstraction without regret

How are we going to do that?
● Constant factors
● Asymptotic factors

We’re going to meet people where they are:
● Tables and SQL if you are an analyst
● Tensors & Linear Algebra if you are a data scientist

We’re going to simplify and consolidate analytics:
● The building blocks for next gen AI (e.g. fast aggregation, factoring, multi-way evaluation, JIT, accelerators) building blocks for 

all enterprise analytics: BI, graphs, rules, planning, mathematical optimization.
We’re going to stage it. We’re going to consolidate and checkpoint our gains as we go.

● AutoML (with automatic feature engineering and relational statistics) -> Data scientist
● Data Management Systems for Analytics (aka data lakes) -> Data scientist
● Business Intelligence & Data Warehouses -> Analyst & End User

What are we doing about it?
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Product: Never have to start from scratch again

• Analytics
• Data integration and federation
• Operational

Data
• General: e.g. Weather, Events, Consumer, Sentiment
• Domain and industry specific: e.g. securities, crypto currencies
• Competitor: e.g. price

Engine
• Database
• AI and Analytics

Tools
• Data scientists: Notebooks (e.g. Jupyter)
• Domain modelers: e.g. ontology editors (e.g. Jupyter, NORMA, Protégé)
• Analysts: e.g. BI and spreadsheets

Templates
• Industry: retail, financial services, technology & software.
• Problem class: (product) knowledge graphs, recommender systems, anomaly detection, 

portfolio optimization
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