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The Problem

Flooding on the outskirts of Houston, Texas, August 31, 2017 (Photo credit: South 

Carolina National Guard) 

https://www.planet.com/insights/anatomy-of-a-catastrophe/

http://blog.digitalglobe.com/news/team-rubicon-uses-digitalglobe
-technology-to-aid-houston-residents-after-hurricane-harvey/



Multiview Approach



Digital Globe Open Satellite Data 

➢ 3 TB of image data 
➢ Missing data, missing bands
➢ Clouds
➢ Crowdsourced manual annotations in JSON (Tomnod)



NOAA Public Aerial Data 

➢ 400GB of image data 
➢ No clouds



FEMA v. TOMNOD

Damage Annotations



Oak Ridge National Labs

Building Footprints



Microsoft

Building Footprints



Object Detection (A Deep Learning Approach)
● Faster R-CNN (Ren et al., 2015)

● Single Shot MultiBox Detector (SSD) 
(Liu et al., 2016) 

NOAA damage predictions with SSDTOMNOD damage predictions with SSD



Data Processing Pipeline
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Results (Average Precision)

Alternative Flooded/Damaged Non-damaged Evaluation Score (mAP) 

SSD on 
Satellite Imagery

0.47 0.62 0.55

SSD on 
Aerial Imagery

0.32 0.65 0.48

Faster R-CNN
Satellite Imagery

0.31 0.61 0.46

How can we represent the uncertainty to emergency responders?



Evaluation

Human-labeled data Predicted output

Identify Flooded Buildings

Flooded/Damaged



Evaluation

Human-labeled data Predicted output

Identify Damaged Buildings (Blue Tarp)

Flooded/Da
maged



Evaluation

Human-labeled data Predicted output

Identify Damaged Buildings 

Flooded/Damag
ed



Computational Infrastructure

Hyak University Cluster: Downloading, Compressing and Tiling

Amazon Web Services: Deep Learning

Local QGIS server: Joins and Manual Inspection

Pros: 
● easy to experiment as not charged for every action

Cons:
● no root access: 

○ best to install Python packages through conda
○ Some geospatial libraries conda distributions don’t 

have full functionality 
○ no docker support

Pros:
● can use pre-built images: great for deep learning
● can save snapshots of all the work
● can use GPUs without dealing with hardware and drivers
● can use managed databases

Cons:
● everybody needs to learn about security management
● uploading data is free, but exporting and GPU 

computations are expensive

Pros:
● easy to see

Cons:
● not reproducible



Sharing is Caring

Datasets:
● Compressed and tiled dataset
● Training Dataset
● PostGIS SQL database with geospatial data
● Pickled trained models

Cloud Backup:
● AWS S3 bucket 
● Snapshots for instances + database

Code on GitHub:
https://github.com/DDS-Lab/

Website:
https://dds-lab.github.io/disaster-damage-detection/

https://github.com/DDS-Lab/
https://dds-lab.github.io/disaster-damage-detection/


Objectives:

● Build an interdisciplinary community of users of satellite/aerial imagery

● Apply state-of-the-art approaches for large scale data processing and computer vision

● Develop software tools and advance the methodology in the remote sensing field

Join us remote_sensing@uw.edu!

https://uwescience.github.io/sat-image-analysis/

Valentina Staneva: vms16@uw.edu and Amanda Tan: amandach@uw.edu

Activities:
● Computational Workflow Demos, Tutorials, Hackatons, Networking

mailto:remote_sensing@uw.edu
https://uwescience.github.io/sat-image-analysis/
mailto:vms16@uw.edu

