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The Problem

http://blog.digitalglobe.com/news/team-rubicon-uses-digitalglobe Flooding on the outskirts of Houston, Texas, August 31, 2017 (Photo credit: South
-technology-to-aid-houston-residents-after-hurricane-harvey/ Carolina National Guard)

https://www.planet.com/insights/anatomy-of-a-catastrophe/



Multiview Approach
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Digital Globe Open Satellite Data
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> 3 TB of image data

> Missing data, missing bands

> Clouds

> Crowdsourced manual annotations in JSON (Tomnod)



NOAA Public Aerial Data
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> 400GB of image data

> No clouds




Damage Annotations
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Object Detection (A Deep Learning Approach)

Faster R-CNN (Ren et al., 2015)

Single Shot MultiBox Detector (SSD)
(Liu et al., 2016)

looded / Damaged Building: 53%




Data Processing Pipeline
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Alternatives
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Results (Average Precision)

Alternative Flooded/Damaged Non-damaged Evaluation Score (mAP)
SSD on 0.47 0.62 0.55
Satellite Imagery
SSD on 0.32 0.65 0.48
Aerial Imagery
Faster R-CNN 0.31 0.61 0.46
Satellite Imagery

How can we represent the uncertainty to emergency responders?
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Evaluation

Human-labeled data Predicted output
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Computational Infrastructure

Hyak University Cluster: Downloading, Compressing and Tiling

Pros: Cons:
° easy to experiment as not charged for every action ° no root access:
o best to install Python packages through conda
o Some geospatial libraries conda distributions don’t
have full functionality
o no docker support

Amazon Web Services: Deep Learning

Pros: Cons:
° can use pre-built images: great for deep learning ° everybody needs to learn about security management
e  can save snapshots of all the work ° uploading data is free, but exporting and GPU
° can use GPUs without dealing with hardware and drivers computations are expensive
° can use managed databases

Local QGIS server: Joins and Manual Inspection

Pros: Cons:
° easy to see ° not reproducible




Sharing is Caring

Datasets:
e Compressed and tiled dataset d .
e Training Dataset IEEEDataPort IEEE
e PostGIS SQL database with geospatial data
o

Pickled trained models BENCHMARK DATASET FOR AUTOMATIC DAMAGED BUILDING DETECTION FROM
POST-HURRICANE REMOTELY SENSED IMAGERY
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Code on GitHub:

Website:


https://github.com/DDS-Lab/
https://dds-lab.github.io/disaster-damage-detection/

Satellite Image Analysis

Special IntePest Group at UW eScience Institute
Ty, o .

e

Objectives:

e Build an interdisciplinary community of users of satellite/aerial imagery
e Apply state-of-the-art approaches for large scale data processing and computer vision

e Develop software tools and advance the methodology in the remote sensing field

Activities:
e Computational Workflow Demos, Tutorials, Hackatons, Networking

Join us remote_sensing@uw.edu! o
| .
https://uwescience.qithub.io/sat-image-analysis/ {{8:

Valentina Staneva: vms16@uw.edu and Amanda Tan: amandach@uw.edu
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