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ABSTRACT
In massively collaborative projects such as scientific or com-
munity databases, users often need to agree or disagree on
the content of individual data items. On the other hand,
trust relationships often exist between users, allowing them
to accept or reject other users’ beliefs by default. As those
trust relationships become complex, however, it becomes dif-
ficult to define and compute a consistent snapshot of the con-
flicting information. Previous solutions to a related problem,
the update reconciliation problem, are dependent on the or-
der in which the updates are processed and, therefore, do
not guarantee a globally consistent snapshot.

This paper proposes the first principled solution to the au-
tomatic conflict resolution problem in a community database.
Our semantics is based on the certain tuples of all stable
models of a logic program. While evaluating stable models
in general is well known to be hard, even for very simple logic
programs, we show that the conflict resolution problem ad-
mits a PTIME solution. To the best of our knowledge, ours
is the first PTIME algorithm that allows conflict resolution
in a principled way. We further discuss extensions to nega-
tive beliefs and prove that some of these extensions are hard.
This work is done in the context of the BeliefDB project at
the University of Washington, which focuses on the efficient
management of conflicts in community databases.

Categories and Subject Descriptors: H.2.5: Heteroge-
neous Databases; H.3.3: Information Search and Retrieval

General Terms: Algorithms, Performance

1. INTRODUCTION
In many scientific projects today, a community of users

is working together to assemble, revise, and curate a shared
data repository. Since the true state of the world is generally
not known in many scientific disciplines, users will often have
not just overlapping but also conflicting beliefs about the
world. Hence, as the community accumulates knowledge
and the database content evolves over time, it will inevitably
contain conflicting information. An example domain with
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Figure 1: Origins of three Indus glyphs as asserted
by archeologists Alice, Bob and Charlie (a). Alice’s
beliefs after applying trust mappings from Fig. 2 (b).

highly disputed and still changing beliefs is the current state
of knowledge on the Indus script [17].

Example 1.1 (Indus script). The Indus civilization
flourished about 2600 to 1900 B.C. in what is now eastern
Pakistan and northwestern India. No historical informa-
tion exists about the civilization, but archaeologists have un-
covered samples of their writing on stamp seals, sealings,
amulets, and small tablets. To this day, the script on these
objects remains undeciphered and various claims of deci-
pherments have been put forward. One important step in
such interpretations is determining the “origin” of the glyph
which is the actual motif that was stylized into the glyph.
For example, the origin of the glyph has been attributed
by different archeologists1 to be either a ship hull, a cow,
or a jar. Similarly, the glyph has been interpreted to
originate from a fish or a knot, whereas the glyph is
widely agreed to represent an arrow [15]. The current state
of knowledge can be represented in a relational table (Fig. 1a)
where conflicting beliefs of researchers (here simplified with
Alice, Bob and Charlie) are represented by tuples (here tu-
ples b1 to b6) with partial key violations, highlighting the lack
of agreement among archeologists.

Recent work has proposed trust mappings between users
in order to support collaboration and data sharing [19]. A
trust mapping is a statement that a user is willing to accept
another user’s data value. Priorities are further used to spec-
ify how to resolve conflicts between data values coming from
different trusted users. Figure 2 illustrates three trust map-
pings, two defined by Alice (m1 and m2) and one defined
by Bob (m3). Figure 1b shows Alice’s version of the data
after applying these mappings to Example 1.1: The second

1Parpola, Mahadevan, and Knorozov [15]

219



and third tuples result from her trust of Bob and Charlie.
Where they disagree (on ), Alice sees Bob’s value (fish)
instead of Charlie’s value (knot) because she assigned to Bob
a higher priority (100) than to Charlie (50)2.

Several systems have adopted some form of conflict han-
dling or trust mapping in order to facilitate data sharing
among users [7, 9, 11, 16, 19] (see Fig. 3 for a comparison of
their features). However, providing a consistent semantics
to a set of trust mappings is a challenging problem. The
current state of the art is the approach taken by the Orches-
tra system in the context of update exchange [9]. Updates
are treated one at a time, in a First-In First-Out manner.
When an update is published by a user, the new value is
propagated according to the trust mappings to other users,
and conflicts are resolved based on the priorities. At each
moment, a user is provided with a snapshot of the current
database, according to other users’ beliefs and her own trust
relationships. However, this snapshot may be inconsistent
because (i) it depends on the order in which the updates are
processed, and (ii) it may become inconsistent as a result of
other updates.

Example 1.2 (Indus script continued). Consider the
following sequence of updates starting with an empty database:

Time User Update for Beliefs for
Alice Bob Charlie

0 - - -
1 Charlie insert jar - - jar

2 jar - jar

3 jar jar jar

4 Bob insert cow ? cow jar

Charlie is the first user to insert the origin of as jar,
which propagates to Alice and Bob. When Bob inserts cow,
the system fails to propagate this to Alice because she already
has a data value acquired at an earlier timestamp. Thus, Al-
ice continues to see jar. This is inconsistent, because Alice
trusts Bob more than Charlie. Had the updates been per-
formed in reverse order (first Bob inserts cow then Charlie
inserts jar) then Alice would end up with cow. Thus, the
snapshot for Alice depends on the order in which the up-
dates are performed, which is undesirable. One may attempt
to address that by storing the lineage of each data value: the
system could then update Alice’s value because it knows it
came from Charlie. However, maintaining the lineage of all
values in a large system is difficult, because an update to one
value may affect the lineage of many other data values.

A second problem is that update propagation cannot handle
updates or revocation of data values. Consider the following
sequence, again starting from an empty database:

Time User Update for Belief for
Alice Bob Charlie

0 - - -
1 Charlie insert jar - - jar

2 jar - jar

3 jar jar jar

4 Charlie update jar → cow ? ? cow

2Note that priorities are assigned by users and only serve to
impose a total preorder on their trusted parties. Priorities of
mappings assigned by different users, e.g. m2 with priority
50 and m3 with priority 80, cannot be compared.

Charlie

Bob

Alice

80

50

100

m1: Alice(k,v) ← Bob(k,v) (prio 100)
m2: Alice(k,v) ← Charlie(k,v) (prio 50)
m3: Bob(k,v) ← Alice(k,v) (prio 80)

Figure 2: Example trust mappings between arche-
ologists Alice, Bob and Charlie.

Both Alice and Bob import jar from Charlie, and both should
update their belief when Charlie updates his to cow. How-
ever, this is difficult to achieve even if one keeps the lin-
eage of each value. The problem is that Alice and Bob trust
each other with highest priority: Alice keeps her jar value
because of Bob’ value jar; Bob keeps his value because of
Alice’s value.

In this paper we propose an efficient and principled so-
lution to the conflict resolution problem: given a network
of priority trust mappings, find the values that are believed
(and trusted) by each user. Our first contribution is a def-
inition of conflict resolution based on a stable solution. A
stable solution is simply a global assignment of values to
users such that all trust mappings are satisfied, and that
each value has a lineage to a value that was inserted explic-
itly by some user. We show that stable solutions correspond
precisely to the stable models of logic programs with nega-
tion. However, computing stable models is notoriously hard:
even if each rule of the program has a single predicate which
is negated, deciding if a stable model exists for a given logic
program is NP-hard [4, pp. 396]. We show that off-the-shelf
logic program solvers scale exponentially when applied to
conflict resolution. Instead, we describe a new, efficient al-
gorithm that runs in quadratic time in the number of trust
mappings, and computes for each user both the possible val-
ues and the certain values. To the best of our knowledge,
this is the first solution to the conflict resolution problem
that is both principled and efficient. We describe further
extensions to answer queries about the conflicts themselves,
such as finding pairs of users that disagree in at least one
stable solution, or finding the lineage of a belief.

Secondly, we study the impact of constraints on the con-
flict resolution problem. Attribute-value constraints are de-
fined by users, and can be, for example, a range-constraint
for a numerical attribute, or an inclusion constraint (check-
ing that the value appears in a reference database) for a
categorical attribute. Once a user defines a constraint, the
effect is that she rejects all values that do not satisfy the
constraint, hence we also refer to a constraint as a set of
negative beliefs.

The simplest way to handle constraints is to restrict their
usage locally: the constraint is only used to decide whether
to accept or reject a value coming from another trusted user,
and the constraint itself is not further propagated to other
users. Only the data values are propagated. We call this the

220



co
nfl

ic
ts

tr
us

t
m

ap
pi

ng

pr
io

ri
ti
es

up
da

te
in

de
pe

nd
.

re
vo

ke
s

cy
cl

es
co

ns
en

su
s

qu
er

ie
s

Orchestra [9, 19] x x x x
FICSR [16] x

BeliefDB [7] x x x x
Youtopia [11] x x x

Figure 3: Recently proposed systems that model
conflicts or data sharing for a community of users.

agnostic paradigm. Another reasonable approach is to treat
constraints and data values equally and to propagate them
together, based on the prioritized trust mappings. Thus, if
Alice trusts Bob, then she also trusts Bob’s constraints, and
therefore may reject a value from Charlie if that value vio-
lates Bob’s constraint. We call this paradigm eclectic. Sur-
prisingly, we show that both the agnostic and the eclectic
paradigms are computationally hard : computing the pos-
sible values is NP-hard, and computing the certain values
is co-NP hard. Therefore, we propose a third paradigm of
dealing with constraints, called skeptic. Here constraints
continue to be propagated, but, in addition, each data value
v is augmented with a constraint that rejects all other data
values except v. When v is accepted, the constraint is re-
dundant, but its role becomes important later downstream,
if v is rejected (e.g. because of some other user’s constraint).
We show that the skeptic paradigm to conflict resolution can
be computed efficiently (in quadratic time in the number of
trust mappings). Thus, we propose the skeptic paradigm as
our solution to handle constraints during conflict resolution.

Finally, we study bulk conflict resolution, when similar
trust relationships are applied to a large number of data
objects. Here, the complexity is dominated by a large num-
ber of objects, while the number of users is assumed to be
small. We show that by simple changes to our two algo-
rithms (without and with constraints) we can translate the
trust mappings into SQL and execute them in a standard
relational database.

In summary, our contributions with this paper are:
• We define a principled solution to the conflict resolu-

tion problem, called stable solution, and give an algo-
rithm that runs in quadratic worst time (Sect. 2).
• We describe three paradigms for handling constraints

in conflict resolution and prove that two are hard.
For the third one, we give an algorithm that runs in
quadratic worst time (Sect. 3).
• We discuss conflict resolution in bulk and describe a

solution based on a translation into SQL (Sect. 4).
• We conduct experiments that show that, while quadratic

in the the worst case, our proposed solutions actually
scale linearly in most cases (Sect. 5).

2. BASIC CONFLICT RESOLUTION
In this section, we define our model for handling conflicts

through priority trust mappings. We do not consider con-
straints here, but discuss those later in Sect. 3.

The database consists of a collection of objects. We as-
sume w.l.o.g. that each object is identified by a key k and

has a single attribute. We write (k, v) when the object with
identifier k has attribute value v. Given an object, different
users may have conflicting beliefs about the correct value of
its attribute. Thus, the attribute may take one of several
values v1, v2, . . . according to different users’ beliefs. We de-
note D the set of possible data values, and U the set of users.
Thus, user x ∈ U may believe that (k, v) is correct, user y
may believe (k,w) is correct, where v, w ∈ D, while user z
may have no opinion about the value of the object k.

Users’ beliefs may differ from object to object. In this
and the following section, we treat each object separately
and therefore omit mentioning k altogether. In Sect. 4, we
discuss how to efficiently handle multiple objects.

Thus, a user either has an explicit belief about the value
of the object, or can derive her belief implicitly through
priority trust mappings. We define these notions formally.

Definition 2.1 (Explicit Belief b0). An explicit be-
lief is a partial function from users to values with b0(x) being
the value believed by user x.

Definition 2.2 (Priority Trust Mapping m). A pri-
ority trust mapping (or trust mapping, in short) is a triple
m= (z, p, x), where z, x are users and p is an integer. The
meaning is that user x trusts the value from user z with
priority p. We call z a parent of x, and x a child of z.

Definition 2.3 (Priority Trust Network TN ). A
Priority Trust Network (or trust network, in short) is a la-
beled graph TN = (U,E, b0), where U is a set of users, E is
a set of priority trust mappings, and b0 is an explicit belief.

Given a TN, each user x computes her belief b(x) as fol-
lows: If x has an explicit belief b0(x) then this is also her
belief. Otherwise, x computes her belief implicitly by choos-
ing a trust mapping (z, p, x) with highest priority (i.e. largest
p with ties broken arbitrarily), such that the parent z has
some belief, and defines b(x)=b(z). Thus, the explicit beliefs
stated by some of the users propagate through the graph to
other users. If a user has two trusted parents with different
beliefs, then the conflict is resolved according to the priority,
with ties broken arbitrarily.

Definition 2.4 (Stable solution b). A stable solution
of a trust network (U,E, b0) is a partial function b from users
to values, so that for every user x with b defined, there exists
a path x0 → x1 → . . .→ xn=x, s.t.:

(1) x0 has an explicit belief b0(x0),
(2) all nodes along the path have the same implicit belief

b(xi)=b0(x0), and
(3) at no node xi there is a trust mapping (x′i−1, p

′, xi)
with higher priority p′ > p than (xi−1, p, xi) and with
a conflicting belief b(x′i−1) 6= b(xi) at parent x′i−1.

In this case, we call the sequence x0, . . . , xn the lineage of the
belief b(x). In other words, every belief b(x) can be traced to
some explicit belief along paths that are not dominated with
conflicting values. b(x) remains undefined only if no parent
of x has an implicit belief and x has no explicit belief either.

Resolving a trust network can be thought of as a con-
flict resolution process: users that have explicit and distinct
beliefs conflict with each other, and users without explicit
beliefs decide whom to trust based on the priority trust map-
pings. We illustrate with two examples:
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Figure 4: Two example trust networks with either
one (a) or two (b) stable solutions.

Example 2.5 (Simple TN). Fig. 4a shows a simple net-
work that has a single stable solution: b(x1)=v (and b(x2)=
v, b(x3) = w). Consider now Fig. 2 and assume the sin-
gle explicit belief b0(Charlie) = jar. Then the unique so-
lution is b(Alice) = b(Bob) = jar. On the other hand, if
both Charlie and Bob have explicit beliefs b0(Charlie)=jar,
b0(Bob)=cow, then the unique solution is b(Alice)=cow.

Example 2.6 (Oscillator TN). Now consider the trust
network in Fig. 4b. It has two stable solutions, one with
b(x1) = b(x2) = v, the other with b(x1) = b(x2) =w. To see
that the first is a stable solution, note that x1 and x2 de-
rive their beliefs from x2 and x1 respectively (cyclic), and
both have a lineage that can be traced back to b0(x3). On the
other hand, setting b(x1) = b(x2) = u, where u is an arbi-
trary value, is not a stable solution, because u doesn’t have
a lineage to an explicit belief.

The last example illustrates an important issue in solving
a trust network: if the network has cycles, then there can
be more than one stable solution, even if for each node, the
trust mappings impose a total order on its parents. Cycles
in trust mappings occur naturally since mappings are de-
fined by individual users, and those often form groups that
mutually trust each other more than others. Therefore, a
conflict resolution system must cope with cycles, and this is
a difficult problem as we have seen in Example 1.2.

2.1 Problem Statements
We define a principled approach to conflict resolutions in

terms of certain beliefs. For technical purposes, we define
them together with their duals, the possible beliefs:

Definition 2.7 (Certain / Possible Belief). Let x
be a user and v be a value. We say that v is a certain belief
if for every stable solution b, b(x) = v. We say that v is a
possible belief if there exists a stable solution b s.t. b(x)=v.

The main problem that we study in this paper is for each
user x, find their certain beliefs, denoted cert(x). We call
it resolving a trust network. For a simple illustration, the
certain beliefs in Example 2.6 are: cert(x1)=u, cert(x2)=v,
cert(x3) = cert(x4) = ∅. Each user’s certain belief represent
a snapshot of the conflicting information in the network. If
the network has a unique stable solution b, then each user x
with at least one parent with a belief, also has a well defined
certain belief, and cert(x) = b(x); if there is more than one
solution, then for some of those users cert(x)=∅.

In addition, we show that our techniques can be extended
to solve several other related problems, such as:
• Agreement checking: Find pairs of users x, y who agree

in all stable solutions b: b(x) = b(y).

• Consensus value: Given two users x, y, find all values v
such that in every stable solution b, b(x)=v iff b(y)=v.
• Lineage computation: Given a user x and possible

value v for x, compute a lineage for v.

2.2 Binary Trust Networks
A Binary Trust Network (BTN) is a TN where every node

x has at most two incoming edges and the explicit beliefs
b0(x) are defined only for root nodes x (nodes without par-
ents but with explicit beliefs). We further assume that every
node in a BTN is reachable by a path from some root node.
If x is not reachable, then b(x) is undefined in any stable
solution and may be safely removed from the BTN. The
networks in Fig. 2 and Fig. 4 are binary.

If x has a single parent z1, or two parents z1, z2 with pri-
orities p1 > p2, then z1 is called preferred parent. Otherwise,
it is called a non-preferred parent. Note that if there are two
parents with the same priority, they are both non-preferred.

Proposition 2.8. (Binary Trust Network Equiva-
lence) Every trust network TN is equivalent to a binary
trust network BTN of maximum double size, where size is
the number of trust mappings.

We prove Proposition 2.8 in the appendix and from now
on, and w.l.o.g., consider only binary trust networks.

2.3 Logic Programming and Stable Models
One possible approach to solve a trust network is to use

Logic Programming (LP). Techniques for LP have been stud-
ied extensively in the literature [4] and there are tools for
LP solving. In this section, we explore the applicability of
LP to solving a trust network. We associate the following
LP to a BTN. There is a unary predicate Ux for each user
x, and a unary predicate Cx,z for every non-preferred edge
z → x. If x has an explicit belief v, then Ux is an EDB
predicate, satisfying the single predicate Ux(v); otherwise it
is an IDB predicate. All Cx,z predicates are IDB predicates.
The rules in LP are the following. For every preferred edge
y → x we have rule (1) below, and for every non-preferred
edge z → x we have rules (2a), (2b) below:

Ux(r)← Uy(r) (1)

Cx,z(q)← Uz(q), Ux(r), r 6= q (2a)

Ux(q)← Uz(q),¬Cx,z(q) (2b)

The first rule says that x should believe everything that its
preferred parent y does. The second and third rules state
that x should believe z, except when it conflicts with its
own belief (presumably obtained from the preferred parent,
or from the other non-preferred parent). The intermediate
predicate Cx,z is introduced for technical reasons, to guar-
antee safety of the resulting LP.

The semantics of a LP is given in terms of a stable model.
We briefly review the definition and refer to [4] for details.
Consider the grounded logic program P , obtained by ground-
ing each rule with all values in the active domain: each rule
in the grounded LP has some positive and some negative
predicates (In the case of BTN’s, there is at most one neg-
ative predicate). Consider a model M . The reduct of P by
M is the logic program PM obtained by (a) removing all
rules P where some negative predicate is false in M , and (b)
removing all negative predicates from the remaining rules.
Note that the reduct has no negations. The model M is
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Figure 5: Resolving a trust network with LP solvers
is exponential in the size of the network.

called a stable model if it is the minimal fixpoint model of
the reduct PM . A ground fact is called certain if it be-
longs to all stable models; it is called possible if it belongs to
some stable model. We prove the following in the technical
report [8].

Theorem 2.9 (Logic Program Equivalence). Every
stable solution to a BTN is a stable model to the associated
LP, and vice versa.

Example 2.10 (Oscillator). The LP corresponding to
the oscillator from Example 2.6 is:

U3(′v′)←
U1(r)←U2(r)

C1,3(q)←U3(q), U1(r), r 6=q

U1(q)←U3(q),¬C1,3(q)

U4(′w′)←
U2(r)←U1(r)

C2,4(q)←U4(q), U2(r), r 6=q

U2(q)←U4(q),¬C2,4(q)

It has two stable models, M1 = {U1(′v′), U2(′v′), U3(′v′),
U4(′w′)}, and M2 = {U1(′w′), U2(′w′), U3(′v′), U4(′w′)}.

In summary, one can resolve a trust network as follows.
Rewrite the BTN into a logic program, then use a LP solver
to compute the certain tuples. Unfortunately, solving logic
programs is hard, even in the most restricted settings. De-
ciding whether a logic program has at least one stable model
is coNP-hard even if all rules have a single atom in the body
and that atom is negated; deciding if a ground tuple is a
certain tuple is coNP-hard [13]. These theoretical results
translate into running times that increase exponentially in
the size of the BTN. Figure 5 shows the running time of the
state-of-the-art LP-solver DLV [12] on increasingly larger
BTNs composed of several oscillators from Fig. 4b. One can
see the clear exponential trend: the LP solver becomes im-
practical on graphs larger than 150 nodes. (We report more
extensive experiments in Sect. 5.) Thus, relying on a general
purpose LP solver is not a practical solution. Instead, we
describe in the next section a new algorithm for resolving a
trust network which runs in quadratic time of its size.

2.4 An Algorithm for Conflict Resolution
Algorithm 1 takes as input a BTN and computes the set of

possible values poss(x) for every node x. The sets of certain
values cert(x) can then be derived using the following rules:
cert(x)={a} if poss(x)={a}, and cert(x)=∅ otherwise.

The algorithm maintains a set closed of all nodes x for
which poss(x) is already computed. This set is initialized
with all root nodes, i.e. all nodes with explicit beliefs (I).

Algorithm 1: Resolution Algorithm

Input: BTN = (U,E, b0)
Output: poss(x) for each node x ∈ U

I closed← ∅
foreach node x with b0(x) defined do

poss(x)← {b0(x)}
add x to closed

open← U − closed
M while open 6= ∅ do
S1 if ∃ preferred edge z → x with z ∈ closed ∧ x ∈ open then

poss(x)← poss(z)
move x from open to closed

S2 else
Let SCC(open) be the SCC graph constructed from the
open nodes. Let S be a minimal SCC. Let possS← ∅.
foreach edge z → x with z ∈ closed ∧ x ∈ S do

add all values from poss(z) to possS

foreach x ∈ S do
poss(x)← possS

move all nodes of S from open to closed

open contains all other nodes. During the main loop (M),
the algorithm performs two steps: Step 1 (S1) propagates
greedily poss(x) along preferred edges, closing the destina-
tion nodes. Step 2 (S2) handles the case when no more
preferred edges can be traversed, and we describe it next:

A strongly connected component (SCC) in a graph is a set
S of nodes so that there exists a path from x to y and a path
from y to x, for every two nodes x, y ∈ S. The SCC graph is
formed by contracting the vertices of each SCC. It is known
that this graph is acyclic and can be calculated in O(n)
time using Tarjan’s algorithm [18]. In the second step (S2),
the algorithm computes the SCC graph of open nodes, and
chooses a component S that is minimal in the SCC graph.
In other words, S is an SCC that has no incoming edges
from other SCCs. S may still have incoming edges, but
they are all coming from closed, and moreover, they are all
non-preferred edges. The algorithm defines poss(x), for all
nodes in S as the union of all possible values of all parents
of nodes in S. It then closes all nodes in S.

Example 2.11 (Oscillator). We illustrate the algo-
rithm for Example 2.6. Initially, closed = {x3, x4}, and
poss(x3) = {v}, poss(x4) = {w}. There are no preferred
edges that can be traversed, so the algorithm proceeds with
the second step, computing the connected components of open.
There is a single component, {x1, x2}, and their possible val-
ues are set to poss(x3) ∪ poss(x4) = {v, w}. The output
of the algorithm is: cert(x3) = {v}, cert(x4) = {w}, and
cert(x1)=cert(x4)=∅.

Theorem 2.12 (Resolution Algorithm). Let n be the
number of nodes in a BTN. Algorithm 1 runs in time O(n2)
and correctly computes the set of possible tuples for all nodes
x in BTN.

The running time follows from the fact that the SCC
graph can be computed in time O(n). Note that the runnig
time is not O(n), as the SCC’s may need to be re-calculated
at each iteration as the set open changes at each iteration: we
show in the technical report that the algorithm takes Ω(n2)
in the worst case. We prove correctness in the appendix.
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2.5 Discussion and Extensions
Let’s step back and examine what we have achieved. We

have fixed an object k, and considered a priority trust net-
work. Our goal is to give each user a snapshot of the data
that is consistent with the entire network. Definition 2.4 de-
fines a stable solution for this network, but in general there
may be several stable solutions. We have proposed the cer-
tain values as the snapshot to be shown to the user, and
described Algorithm 1, which computes the certain values
(and the possible values too) in time quadratic in the num-
ber of users. The algorithm may need to be run separately
for each object k, an issue that we will address in Sect. 4.

The important property of our approach is that both the
definition and the algorithm are order-invariant : they do
not rely on any order in which conflicts are to be resolved.
The result is a consistent snapshot of the conflicting infor-
mation. By contrast, as we have seen, prior approaches to
conflict resolution process the explicit beliefs in a fixed order
(e.g. in the order of their transaction time), and the result
depends on this order. As a consequence, if any explicit be-
lief is updated, e.g. some belief is revoked, there may be no
way to re-compute a consistent snapshot. In our approach,
if an explicit belief is updated, we will simply re-run the
algorithm and obtain another consistent snapshot.

As a further benefit of a principled approach, we men-
tion here two extensions of our algorithm that allow the
system to answer more complex queries, as those mentioned
in Sect. 2.1.

Retrieving lineage. We show how to extend the algorithm
to compute the lineage of each possible value. Whenever
we insert a value v into poss(x), store a pointer back to
the value v ∈ poss(z) that produced this possible value at
x: for Step 1 this is a value in the preferred parent, for
Step 2 there can be several (user, value) pairs from outside
the set S: store pointers to all of them. Thus, from each
value v ∈ poss(x) we can trace back several lineages. Note
that this method is not complete: Step 1 misses some lin-
eages that come to x via non-preferred edges. However, it
has the property that each possible value has at least one
lineage that the system can return to the user.

Pairs of possible values. For any two users x, y in a bi-
nary trust network, denote:

poss(x, y)={(v, w) | ∃ stable solution b: b(x)=v, b(y)=w}

Thus, poss(x, y) denotes the set of pairs of values that x
and y can take together. Note that if (v, w) ∈ poss(x, y)
then x ∈ poss(x) and y ∈ poss(y), but the converse is not
true. For example in Fig. 4b, poss(x1, x2) contains the
pairs (v, v) and (w,w), but not (v, w) or (w, v).

Proposition 2.13 (Possible Pairs). Algorithm 1
can be extended to compute poss(x, y) for all pairs of users
x, y. The modified algorithm runs in time O(n4) where n
is the number of users.

The sets poss(x, y) allow us to go beyond the snapshot con-
sisting of certain tuples, and answer more complex queries
about the conflicts and the reconciliation. For example,
the agreement checking query mentioned in Sect. 2.1 can
be answered as {(x, y) | ∀(v, w) ∈ poss(x, y)⇒ v = w}.

3. CONFLICT RESOLUTION WITH CON-
STRAINTS

In this section, we extend our approach to constraints
which we model as negative beliefs. So far, we have only
considered positive beliefs, i.e. a user either believes that
the value of an object is v or has no opinion at all. A neg-
ative belief, in contrast, states that the value of the object
is not v. We denote with (k, v)+ a positive belief, and with
(k, v)− a negative belief.

Constraints occur naturally in collaborative systems and
enable users to filter the data values they accept. For ex-
ample, one users may define the constraint the value of the
‘carbon-date’ attribute is between 1,200 and 40,000 : this cor-
responds to a negative belief for every value v outside the
range. Or, another user may rely on a reference database
before accepting a value, e.g. the value of the ‘translation
attribute’ must be in the ‘list-of-known-words’. These con-
straints are used to refuse a value from a trusted user and
therefore affect the global conflict reconciliation. In addi-
tion, a user may state a negative belief explicitly in order
to refute another user’s statement. For example, user Alice
may state that the origin of is cow, written (k1, cow)+.
User Bob may disagree. He does not know what the origin
of the glyph is, but believes it cannot be a cow. His belief
is thus (k1, cow)−. Bob may accept other values, such as
horse or jar, from users he trusts, but not cow.

As in the previous section, our discussion focuses on a
single, fixed object k and we will not mention k anymore.
We write a positive belief as v+ and a negative belief as v−,
where v is a data value. An explicit belief can be positive
v+, meaning that the user knows that the value is v, or can
be a set of negative beliefs v−, w−, . . .. We allow these sets
to be infinite as long as they can be finitely represented, for
example by a range predicate.

Definition 3.1 (consistency). Two beliefs b1, b2 are
conflicting (b1 6↔b2) if they are either distinct positive beliefs
v+, w+, or one is v+ and the other is v−. Otherwise, b1, b2
are consistent (b1↔b2). A set of beliefs B is called consistent
if any two beliefs b1, b2 ∈ B are consistent.

Definition 3.2 (preferred union). Given two consis-
tent sets of beliefs B1, B2, their preferred union is:

B1~∪B2 = B1 ∪ {b2 | b2 ∈ B2.
(
∀b1 ∈ B1.b1↔b2

)
}

As in the previous section, our goal is to define, then com-
pute all implicit beliefs based on the priority trust mappings.
As we will see next, this raises both conceptual and compu-
tational challenges.

3.1 Three Paradigms
Consider the binary trust network in Fig. 6a. User x1

defines a constraint resulting in a negative belief b−. Let’s
examine user x3: she obviously adopts the explicit belief a+
from her preferred parent x2. The question is: what should
she do with the negative belief b−? Should her belief be
{a+, b−}, or just {a+}? Clearly, once she believes the value
a+, she has no more use for the constraint b−, since the
purpose of the constraint was only to rule out b+ which is
not under consideration at all here. This argument shows
that she may well restrict her belief to {a+}. On the other
hand, her decision may affect the users who trust her. Her
immediate successor x5 will reject a+, but the next user x7
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Figure 6: (a): An example binary trust network with explicit positive and negative beliefs. The edge from the
preferred parent is labeled as such. (b-d): The three alternative paradigms lead to different entailed implicit
beliefs at various nodes for the unique stable solution of the trust network.

has the option of adopting b+ or not. The decision made
by user x3 affects whether x7 can learn or not about the
constraint b− defined upstream. As this example shows,
there are several choices in defining conflict-resolution in the
presence of negative beliefs, even for graphs without cycles.

We propose here three paradigms for trust network res-
olution in the presence of negative beliefs. A paradigm is
formally defined as a set of consistent sets of beliefs that are
considered valid or in normal form. We denote ⊥= {v− |
v ∈ D} the set of all negative beliefs. Equivalently, ⊥ is an
inconsistent constraint that rejects any value.

Agnostic. The only valid belief sets in this paradigm are
singleton positives {v+} and sets of negatives {v−, w−, . . .}.
Once a user knows the value of an object, they do not want
to know any constraints, even if they are consistent with
this value. In the agnostic solution, the negative belief b−
is blocked by x3 who believes only a+ (Fig. 6b).

“An agnostic is a person who believes that nothing is known
or can be known (. . . ) beyond material phenomena.”

Eclectic. Any consistent set of beliefs is valid. In this
paradigm, a user adopts all constraints that are consis-
tent with a given value. Thus, {a+, b−, c−} is a a valid
set of beliefs. The eclectic solution is shown in Fig. 6c.
Here x3 accepts the constraint b− in addition to a+. As a
consequence, this constraint is communicated all the way
to x7, who now rejects b+.

“An eclectic is a person who derives ideas, style, or taste
from a broad and diverse range of sources.”

Skeptic. The valid sets of beliefs are the following: all sets
with only negative beliefs, and all sets that contain exactly
one positive belief and all negative beliefs consistent with
it, i.e. they are of the form {v+} ∪ (⊥ − {v−}). Thus,
when a user accepts a positive belief v+, she also adopts
a constraint that rules out all other values. The skeptic
solution is shown in Fig. 6d. In this paradigm the belief
a+“means” the set {a+, b−, c−, d−, . . .}. When x5 rejects
a+, his belief becomes ⊥. This propagates to x7, who
reject b+, similarly to the eclectic paradigm. However, at
the next step x9 rejects c+ too, hence x9 does not belief
any positive value (he believes ⊥). This differs from the
eclectic paradigm, where x9 believes c+.

“A skeptic is a person inclined to question or doubt all
accepted opinions.”

The paradigm is chosen by the system administrator and
applied to all users. The stable solutions to a trust network
depend on the paradigm chosen. Before we can define the
stable solutions, we need some technical definitions. Let B
be a consistent set of positive and/or negative beliefs. For
each paradigm σ ∈ {Agnostic, Eclectic, Skeptic} (abbre-
viated by {A, E, S}), the normal form Normσ(B) is:

NormA(B) =

{
{v+} if ∃v+ ∈ B
B otherwise

NormE(B) = B

NormS(B) =

{
{v+} ∪ (⊥− {v−}) if ∃v+ ∈ B
B otherwise

The preferred union specialized to the paradigm σ is:

B1~∪σB2 = Normσ

(
Normσ(B1)~∪Normσ(B2)

)
(1)

For example:

{a−}~∪A{b+} = {b+}
{a−}~∪E{b+} = {b+, a−}
{a−} ~∪S {b+} = {b+, a−, c−, d−, . . .}
{b−} ~∪S {b+} = ⊥

We define next a stable solution for a binary trust network
with constraints. We make the restriction that edges enter-
ing the same node have distinct priorities, thus we disallow
ties. We discuss ties in the technical report [8].

Definition 3.3 (Stable solution w/ constraints).
Let σ ∈ {A, E, S}, and let BTN = (U,E,B0) be a binary trust
network, where for all x, B0(x) is either a positive belief, or
a set of negative beliefs, or the empty set. A stable solution
is a function B from users to sets of beliefs such that:

(1) If x has a preferred parent y and a non-preferred parent
z, then B(x) =B0(x) ~∪σ

(
B(y)~∪σB(z)

)
. If x has only

one parent y, then B(x) =B0(x)~∪σB(y). If x has no
parent, then B(x)=Normσ

(
B0(x)

)
.

(2) For every belief b ∈ B(x) there exists a path x0 →
x1 → . . . → xn=x such that b ∈ Normσ

(
B0(x0)

)
and

b ∈ B(xi) for all i=0, . . . , n.
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Figure 7: (a,b): Representation of NOT and OR gates for Agnostic and Eclectic paradigms. A PASS-
THROUGH gate is similar to a NOT, an AND gate to an OR. (c): A full example of CNF. Notice that 0/1
are encoded differently at different levels: the inputs at the top are a/b for 0/1, the output at Z is e/f for 0/1.

Consider a node x and a positive belief v+. We say that
v+ is possible if there exists a stable solution B s.t. v+ ∈
B(x). We say that v+ is certain, if v+ ∈ b(x) for all stable
solutions B. Our goal is to compute the possible and the
certain positive beliefs under each of the three paradigms.

3.2 The Complexities
We show next that the Agnostic and Eclectic paradigms

are hard, whereas Skeptic is in PTIME.

Theorem 3.4 (Agnostic / Eclectic Complexities).
Let σ be Agnostic or Eclectic. Then the following hold:
(a): Checking if a positive belief is possible at a given node
x in a binary trust network is NP-complete. (b): Checking
if a positive belief is certain at a given node x in a binary
trust network is coNP-complete.

Proof sketch. The proof is a quite simple reduction
from the CNF SAT problem, and we include it here be-
cause it highlights the inherent difficulties of coping with
constraints in conflict resolution. The key technical step is
that Boolean gates NOT, OR, and AND can be encoded as
Trust Networks. Consider the NOT gate in Fig. 7a: The
inputs 0/1 are encoded as beliefs a+/b+, the outputs are
encoded as c+/d+. When the input X is a+ for 0, then the
output Y is d+ for 1. This is because a+ is blocked at the
next level, hence d+ advances (the parentheses show the ad-
ditional negative beliefs that are propagated in the Eclectic
paradigm). Similarly, one can check that if X is b+ for 1,
the output Y is c+ for 0. Thus, the network maps a+/b+
to d+/c+, hence it is a NOT. If we modify the network
by switching c with d, we obtain a PASS-THROUGH gate
which maps a+/b+ to c+/d+. Next consider the ternary OR
gate in Fig. 7b: If at least one of the three inputs is d+ for
1, d+ will propagate to the output. If all inputs are c+ then
all positive beliefs are blocked, and the output is e+ for 0.
Thus, the encoding of the output is e+/d+ for 0/1. An AND
gate is obtained similarly. By combining these gates, making
sure that each level uses the same encoding of Boolean val-
ues as positive beliefs, we can represent an CNF expression
where the last level encodes 0/1 as e+/f+. We further use
basic oscillators, as in Fig. 4b to generate inputs 0/1. Fig. 7c
illustrates the entire encoding of (X1 ∨ ¬X2) ∧ (X2 ∨ X3).
Notice the role of the PASS-THROUGH gates in ensuring

that all values at the second level have the same encoding
c+/d+. The reduction is completed by the observation that
the CNF formula is satisfiable iff f+ ∈ poss(Z), where Z
is the output node. This proves the first claim of the theo-
rem. The second claim follows from the fact that checking
non-satisfiability of CNF formulas is coNP-hard, and that
the formula is unsatisfiable iff e+ ∈ cert(Z).

Given this negative result, it is somewhat surprising that
the third paradigm Skeptic can be computed in PTIME.
Algorithm 2 runs in O(n2) and computes a set repPoss(x)
for each node x, which is a representation of the set of pos-
sible values poss(x) at x as follows: If repPoss(x) contains
a positive value v+, then all other negative values are also
possible. if repPoss(x) contains ⊥, then all negative values
are also possible. In summary, the set of possible values
poss(x) represented by P = repPoss(x) is:

poss(x) = {v−|v− ∈ P} ∪ {w−|⊥ ∈ P, w ∈ D}
∪ {v+ |v+ ∈ P} ∪ {w−|v+ ∈ P, w ∈ D,w 6=v}

If repPoss(x) does not contain a positive value or ⊥, we call
it of Type 1. Otherwise, it is of Type 2.

We describe now the algorithm, which is a natural ex-
tension of Algorithm 1. The preprocessing phase (P) finds
all nodes who either have explicit negative beliefs or whose
preferred ancestors have explicit negative beliefs. For that
it starts from nodes x where the explicit belief has only neg-
ative values, and continues with all nodes whose preferred
parent has only negative beliefs. These nodes correspond
to the empty nodes in the earlier Algorithm 1, but unlike
there, we cannot discard these nodes yet. The initialization
phase (I) again creates the sets of closed and open nodes,
and closes nodes with explicit positive beliefs. Step 1 (S1)
of the main loop (M) traverses all preferred edges z → x,
and updates repPoss(x) accordingly. Step 2 (S2) is slightly
more involved and described next:

Here the algorithm finds a minimal connected component
S of open nodes (as before), but it cannot simply flood it
with all positive values waiting to enter S. The reason is that
some nodes in S can be reached from closed nodes through
preferred edges. These are precisely the edges we skipped
in Step 1. Thus, some nodes in the component S can be
forced to accept negative beliefs, and these prevent a value
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v+ waiting to enter S to reach the entire set S. Instead, we
simply compute which subset of S the value can reach, and
add v+ to the set of possible values for those nodes. For all
unreachable nodes, we add ⊥ to the set of possible values,
because in the Skeptic paradigm: {v−}~∪S{v+} = ⊥.

Theorem 3.5. (Skeptic resolution algorithm) Al-
gorithm 2 runs in time O(n2) and computes the set of pos-
sible values, for the Skeptic paradigm.

3.3 Discussion
This section described how to handle constraints during

conflict resolution. We represent constraints as negative be-
liefs and argue that they are an important feature in collab-
orative data sharing. The question we have studied is how
trust mappings should handle constraints. Perhaps the most
natural approach is to use the constraints only as filters for
data values accepted from other users, but otherwise ignore
them during reconciliation. This is what we called the Ag-

nostic paradigm. The second natural approach is to simply
propagate constraints together with data values, in what we
called the Eclectic paradigm. However, we have shown
that computing the possible values under both paradigms is
NP-hard (and computing the certain values is co-NP hard),
so we do not advocate their use in data reconciliation. Our
third paradigm is, we believe, natural too: propagate con-
straints, but in addition associate to a data value a maxi-
mal constraint, which rules out any other data value. This
paradigm, we have shown, is in PTIME, and the algorithm is
a natural, yet somewhat detailed extension of Algorithm 1.
We propose the Skeptic paradigm as the basis for conflict
resolution in cooperative data sharing systems.

We note that, if no constraints exist in the system, then
all three paradigms collapse to the simple semantics we dis-
cussed in Sect. 2.

The hardness of the Agnostic and Eclectic paradigms
holds under the assumption that the network is cyclic: the
proof used oscillators. If the network is a DAG, then all three
paradigms can be computed in PTIME, by simply applying
repeatedly the definition of preferred union (Eq. 1).

Proposition 3.6 (Acyclic BTNs). Let BTN be a bi-
nary trust network that is acyclic. Then for any of the
three paradigms (Agnostic, Eclectic, Skeptic) the follow-
ing hold: (a) there exists exactly one stable solution, and (b)
that solution can be computed in PTIME.

A puzzling question is why is the Skeptic paradigm in
PTIME, while the other two are hard. It is easy to see
that the Boolean gates in Fig. 7 no longer work under Skep-
tic, but we do not consider this a satisfactory explanation.
While we cannot give an ultimate cause, we point out one
interesting difference. The preferred union for Skeptic is as-
sociative, while it is not associative for either Agnostic nor
Eclectic. For example, consider the two expressions B1 =
{a−}~∪σ

(
{a+}~∪σ{b+}

)
, B2 =

(
{a−}~∪σ{a+}

)
~∪σ{b+}. For

Agnostic, we have B2 ={b+}, for Eclectic B2 ={a−, b+},
while for both B1 ={a−}. By contrast, one can show that ~∪S
is associative. Associativity as a desirable property during
data merging was pointed out in [14].

4. EXTENSION TO BULK PROCESSING
So far we have treated one object at a time. If several ob-

jects need to be updated, then the reconciliation algorithm

Algorithm 2: Skeptic Resolution Algorithm

Input: BTN = (U,E, b0)
Output: repPoss(x) for each node x ∈ U

foreach x ∈ U do prefneg(x)← ∅ and repPoss(x)← ∅
P foreach node x with ∃v− ∈ b0(x) do

prefNeg(x)← b0(x)

while ∃ preferred edge z → x with v− ∈ prefNeg(z),
v+ 6∈ b0(x) do

prefNeg(x)← prefNeg(x) ∪ prefNeg(z)

I closed← ∅
foreach node x with v+ ∈ b0(x) do

repPoss(x)← b0(x)
add x to closed

open← U − closed
M while open 6= ∅ do
S1 if ∃ preferred edge z → x with z ∈ closed, x ∈ open and

repPoss(x) = ∅ then
repPoss(x)← repPoss(z)
move x from open to closed

S2 else
Let SCC(open) be the SCC graph constructed from the
open nodes. Let S = {x1, . . . , xn} be a minimal SCC. Let
{z1, . . . , zk} be all nodes in closed that have edges into S.
forall i ∈ {1, . . . , n}, j ∈ {1, . . . , k} do

foreach v+ ∈ repPoss(zj) do
Let S′ = S − {x | v− ∈ prefNeg(x)}
if ∃ path zj → xi in S′ then

repPoss(xi)← repPoss(xi) ∪ {v+}
else

repPoss(xi)← repPoss(xi) ∪ {⊥}

foreach v− ∈ repPoss(zj) do
repPoss(xi)← repPoss(xi) ∪ {v−}

move all nodes of S from open to closed

needs to be run separately for each object. In this section,
we show, that under certain conditions, the set of possi-
ble/certain values can be computed in bulk, for an entire
set of objects k1, k2, . . . , kn. We sketch here the approach
and provide the details in the technical report.

Let TN1, . . . ,TNn be the trust networks for each of the n
objects. We make the following two assumptions:

(i) The set of trust mappings is the same for each object
ki, i.e. a user x trusts a user z globally, for all objects.

(ii) If a user has an explicit belief for an object ki, then it
has an explicit belief for each of the objects.

Then it is possible to simply adapt both, Algorithm 1
and Algorithm 2 to bulk-compute the set of possible tuples
through SQL queries. Let POSS(X,K,V) denote the a relation
representing the possible values: an entry (x, k, v) means
that v is a possible value for user x and object k. Then, in
step 1 of the modified algorithm, when traversing a preferred
edge z → x, we perform the following bulk insertion:

insert into POSS

select ’x’ AS X, t.K, t.V

from POSS t

where t.X = ’z’

In step 2, when ’flooding’ a strongly connected component
SCC with the beliefs coming from the users z1, . . . , zk we
perform the following bulk insertions for each xi ∈ SCC:
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Figure 8: Experiments for various setups show quasi-linear scalability of our Resolution Algorithm (RA) in
contrast to exponential scalability for solving the corresponding Logic Program with DLV.

insert into POSS

select distinct ’xi’ AS X, t.K, t.V

from POSS t

where t.X = ’z1’ or . . . t.X = ’zk’

For Algorithm 2 we need to modify some of the insert
statements to insert the appropriate representation of ⊥
rather than poss(x).

5. EXPERIMENTS
We have conducted an experimental evaluation of our

approach addressing the following questions: What is the
observed runtime performance, both of the quadratic con-
flict resolution algorithm (RA) and of the bulk-update algo-
rithm? And how does our approach compare to computing
the stable models using an advanced liner program solver?
For the latter we used the programming system DLV [12],
which is widely considered the state-of-the-art implemen-
tation of logic programming with negation, and execute it
under the brave query semantics3. All algorithms are imple-
mented in Java and were run on a 2.2GHz dual core machine
with 4GB of main memory. Execution times for RA are av-
eraged over 20 trials.

We used two data sets in our experiments. The first is a
synthetic data set, consisting of a network of many indepen-
dent cycles. This network consists of several, disconnected
4-node clusters of the form from Example 2.6. In this net-
work, one out of two users has an explicit belief. In our
second data set, we modeled a trust network with as much
expected real-life characteristics as possible. Real-world so-
cial structures are known to exhibit a power-law behavior,
often referred to as scale-free. We used a large crawl of a
top level domain of the World Wide Web and the link struc-
ture between sites which exhibits such behavior, with around
270k domains with 5.4M links. We identified domains with
users and links with trust mappings, and assigned random
priorities. We varied the size of this database by randomly
sampling a fraction of all edges and include both start and
end point in our sampled graph.

The results of our experiments are reported in Fig. 8. For
the synthetic data set, as shown before, DLV runs in expo-
nential time (Fig. 8a). In contrast, RA runs in almost linear
time: thus, just increasing the number of cycles does not
lead to a quadratic running time of our algorithm. We omit
running times on very small data sets, because they showed
high variance due to factors unrelated to the algorithm (Java

3command: “dlv.bin -brave input.txt query.txt”

memory management, L2 cache behavior). Figure 8b shows
our results on the real data set. DLV performs better on this
data set, since it contains fewer cycles, on average. However,
our algorithm is still faster by several orders of magnitude
and exhibits the same robust behavior as before. Overall,
RA had an average running time of around 0.01 msec per
user and trust relation on both data sets.

We note that the running time of our algorithm is quadratic
in the worst case (we prove this in the technical report [8]),
but the types of graphs that lead to quadratic behavior are
complex and highly regular with nested cycles. We tested
our algorithm on such kinds of graphs and measured running
times of about 4 sec for a network size of 10,000.

Finally, Fig. 8c shows our result for testing the bulk con-
flict resolution algorithm from Sect. 4. We used a trust net-
work with 7 users and 12 mappings, and assumed two users
with explicit beliefs. Then we varied the number of objects
in the database. For each object, we randomly chose these
beliefs of the two users to be in conflict, or in agreement.
Then we reconciled all users, on all objects. The database
system was Microsoft SQL Server 2005, and we used JDBC
for calls to the database. The data was stored in a rela-
tion POSS(X,K,V), as described in Sect. 4. Figure 8c shows
linear data scalability of our algorithm4. The running time
of DLV is exponential here too, because of the conflicts in
half of the objects between the two users. In contrast, the
running time of the bulk conflict resolution algorithm is in-
dependent of the number of conflicts.

6. RELATED WORK
Several systems have been recently described that adopt

some kind of conflict resolution or trust mapping to model
data sharing in a community of users [7, 9, 11, 16, 19]. These
systems discuss techniques in the presence of various subsets
of the features needed in conflict resolution (Fig. 3). Con-
flicts occur when the system allows key constraints; a conflict
is simply a violation of the key constraint. Orchestra is the
only system that considers both conflicts and priorities, and
is closest in spirit to our setting. We share with Youtopia
the use of certain/possible values, a concept originally intro-
duced for incomplete databases [10].

Our solution has relevance to the research areas of data
integration and data exchange. Similar to [19], we assume a
fixed schema in this paper. In contrast, work on peer data

4Data points below 100 msec seem to be dominated by the
overhead of the Java-SQL server connection
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exchange focuses on arbitrary tuple and equality generat-
ing dependencies between different database instances with
varying schemas. However, it does not consider priorities
amongst different mappings between peers and it is known
that data complexity under this semantics is in coNP, and
that it can be coNP-complete even for acyclic peer data
exchange settings [5]. Those proposals whose semantics is
tractable do not consider local integrity constraints (such as
key violations) and hence do not model conflicts [11].

Using logic programs and stable models semantics as means
to produce certain answers has been proposed before un-
der the framework of consistent query answering (CQA) [1].
However, and as we have illustrated, this approach is gen-
erally not tractable; no polynomial time case is known for
universal constraints with negation [3, Fig. 1]. As a conse-
quence, previously proposed semantics that build on logic
programming have coNP data complexity [2] and we are not
aware of any proposed polynomial algorithm that deals with
a principled solution to inconsistency resolution for key con-
straints and trust mappings.

7. CONCLUSIONS
This paper presents a principled approach to the problem

of conflict resolution in a community database where users
trust other users with varying priorities. Our semantics has
a number of intuitive and desired properties such as indepen-
dence of the update sequence and, hence, correctly models
revoke operations and avoids transient effects. We give a
PTIME algorithm that has quadratic worst case scalability
in the size of the network. In our experiments, we show that
it is actually linear on typical network structures. We also
expand our techniques to constraints, and show, depending
on the approach taken, conflict resolution can be either in-
tractable, or computable in time that is quadratic in the
number of users. In addition, we show how this algorithm
can be easily adapted to include bulk processing.
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APPENDIX
A. PROOFS

Proof of Proposition 2.8. Let TN = (U,E, b0). We
construct the binary network BTN by adding some addi-
tional nodes to U , and re-defining the edges. First, for every
node x ∈ U with an explicit belief v=b0(x), we create a new
node x0 in BTN, define b0(x0)=v, and make x0 the highest
priority parent of x: thus, x no longer has an explicit belief,
but will get his belief from x0, which is a root node in BTN.
Second, let (z1, p1, x), . . . , (zk, pk, x) be all edges entering
x, in increasing order of priority: p1 ≤ . . . ≤ pk. We create
k − 2 new nodes y2, . . . , yk−1, and further denote y1 = z1,
yk = x. We remove all edges entering x, and create edges
(yi−1, 1, yi) and (zi, p, yi) for i ∈ {2, . . . , k}, where p= 2 if
pi > pi−1, and p = 1 if pi = pi−1. Thus, every node yi,
i ∈ {2, . . . k}, has two parents yi−1 and zi, which are either
both non-preferred (priorities 1, 1) or non-preferred and pre-
ferred (priorities 1, 2). We prove the following in [8]: (a) for
every stable solution b of BTN its restriction to the nodes in
TN is a stable solution for TN, and (b) every stable solution
b of TN can be extended to a stable solution of BTN.

Proof of Theorem 2.12. We call a set U ′ ⊆ U free if
(a) U ′ contains all root nodes, and (b) every edge from a
node in U −U ′ to a node in U ′ is a non-preferred edge. The
intuition is that a preferred edge forces the target node to
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accept the value of the source node: U ′ is free, if it is not
forced to accept a value from U − U ′.

We show by induction that at each step of the algorithm,
closed is free. Initially it contains only root nodes, hence it
is free. Step 1 extends closed with a new node x by following
a preferred edge: since preferred edges are unique for every
node, there are no other preferred edges into x, hence closed
is still free. In Step 2, closed is extended with an entire set
S: but all edges entering S are coming from closed (because
we chose S to be minimal), it continues to be free after
extension. Hence, closed is free at each step of the algorithm.

Lemma A.1 (Forward Lemma). Let U ′ be a free set of
TN = (U,E, b0), and let E′ be the set of edges where both
endpoints are in U ′. Let b′ be a stable solution for the sub-
graph (U ′, E′, b0). Then b′ can be extended to the entire
graph TN . More precisely, there exists a stable solution b
for TN such that for all x ∈ U ′, b(x) = b′(x).

Proof sketch. We prove the statement by induction on
the size of the set U − U ′. When U ′ = U , then there is
nothing to prove, since b′ already applies to the entire graph,
so suppose U ′ ⊂ U . Case 1: there exists a preferred edge
from a node z ∈ U ′ to a node x ∈ U − U ′. Extend b′

to x by defining b′(x) = b′(z); one can check directly from
Definition 2.4 that this is a stable solution for U ′ ∪{x}, and
thus we apply induction hypothesis to U ′ ∪ {x}. Case 2:
all edges from U ′ to U − U ′ are non-preferred. Let S be a
minimal connected component of U − U ′, and let z → x be
any edge5 from U ′ to S. Extend b to the entire set S by
defining b(y) = b(z) forall y ∈ S; one can check that this
is a conflict-resolution solution for U ′ ∪ S; apply induction
hypothesis to the set U ′ ∪ S.

As a simple illustration of the power of Lemma A.1, recall
that there exists logic programs without any stable model [4];
by contrast, every BTN has at least one stable solution. This
follows from the Forward Lemma by letting U ′ be the set of
roots, and defining b′(x) = b0(x) for every root node x: the
lemma ensures the existence of a stable solution.

We now use the lemma to prove the correctness of the
algorithm, by showing soundness and completeness. Sound-
ness: We show by induction on the number of steps that
any value v ∈ poss(x) is a possible value. Suppose the al-
gorithm applies Step 1 to a preferred edge z → x and sets
poss(x) = poss(z). Let v ∈ poss(z): by induction hypoth-
esis there exists a stable solution b s.t. b(z) = v. Then
b(x) = b(z), because the edge z → x is preferred. (We did
not use the lemma at this step.) Suppose the algorithm ap-
plies Step 2 to the SCC S, and let z → x be a non-preferred
edge entering S, and let v ∈ poss(z). We will show that v
is a possible value for all nodes in S. By induction hypoth-
esis there exists a stable solution b s.t. b(z) = v. Define
U ′ = closed∪S: we have shown earlier that this is a free set.
Define the stable solution b′ on U ′ as follows: b′ is equal to b
on closed, and forall nodes y ∈ S, b′(y) = b(z) = v. One can
check that b′ is indeed a conflict resolution on the set U ′ by
applying Definition 2.4 directly (here we use the fact that
all preferred edges to nodes in S are coming only from S).
Apply the Forward Lemma to argue that it can be extended
to a conflict resolution solution on the entire graph: this

5Since each node in the graph is reachable from a root node,
and all root nodes are in U ′, such an edge always exists.

proves that v is a possible value for all nodes in S. Com-
pleteness: We show by induction that for every node x and
every stable solution b, b(x) ∈ poss(x). If x enters closed
after traversing a preferred edge, then the statement follows
inductively from x’s parent, so assume x is in a SCC S, and
let b be a stable solution. Traverse the lineage of b(x) back-
wards, from x to a root node, and consider the first node
z that is not in S. By induction hypothesis b(z) ∈ poss(z),
which implies that b(x) = b(z) ∈ poss(x) (since poss(x) is
the union of all such poss(z)). Note that the completeness
proof also implies that, if poss(x) is a singleton set, then its
unique element is a certain value: cert(x) = poss(x).

Proof of Proposition 2.13. We assume the constraint
(v, w) ∈ poss(x, y) ⇔ (w, v) ∈ poss(y, x) is maintained au-
tomatically, i.e. whenever we insert (v, w) in poss(x, y), we
also insert (w, v) into poss(y, x). For each root node x we ini-
tialize poss(x, x) = {(b0(x), b0(x))} To compute poss(x, y),
the algorithm needs to be modified as follows. During Step
1, when we follow a preferred edge z → x, we set for all
u ∈ closed:

poss(u, x) = poss(u, z)

poss(z, x) = {(v, v) | v ∈ poss(z)}

During Step 2, when we compute the set of possible values
for an SCC S, we do the following. Let z1, . . . , zk be all nodes
in closed that have an edge entering S, and let x1, . . . , xk be
their endpoints in S. Then:

poss(u, x) =
⋃
i=1,k

poss(u, zi), where u ∈ closed, x ∈ S

poss(x, y) =
⋃

i,j:∃disjoint pathsxi→x,xj→y in S′
poss(zi, zj)

We explain these two formulas next. From the proof of
Theorem 2.12 we have seen that for every value v ∈ poss(zi)
it is possible to flood the entire component S with v. This
proves the first line above: any pair of values possible for
(u, zi) is also possible for (u, x). For the second line, we
need to check if, given v ∈ poss(zi) and w ∈ poss(zj), it
is possible to assign v to the node x and w to the node
y. We proceed as follows. Let S′ be obtained from S by
collapsing all nodes that are connected via preferred edges.
(In any stable solution, all collapsed nodes must have the
same value). In the resulting graph, we check whether there
exists two independent paths xi → x and xj → y: this
is solvable in PTIME using network-flow techniques [6, pp.
217]; in particular, if x and y are connected by a path of
preferred edges, then they are the same node in S′ and there
are no independent paths. If such a pairs of paths exists,
then x, y can take simultaneously values v and w. To prove
this, start with a stable solution b that has b(z1) = v and
b(z2) = w, and partition S′ arbitrarily into two sets S1, S2

s.t. the first one contains the path xi → x and the second
one contains the path xj → y. All edges crossing between S1

and S2 are non-preferred (since we have collapsed preferred
edges): hence we can extend the stable solution b to S by
assigning the value v to all nodes in S1 and value w to all
nodes in S2. This proves that the pair of values (v, w) is
possible for the nodes x, y.
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