Data Conflict Resolution
Using Trust Mappings

Wolfgang Gatterbauer & Dan Suciu
University of Washington, Seattle

June 8, Sigmod 2010



http://db.cs.washington.edu/beliefDB

Conflicts & Trust mappings in Community DBs

Background 1: Conflicting beliefs

U, |ship hull| Alice
U, | cow |Bob
Uy jar | Charlie
%, | fish |Bob
%, | knot |Charlie
?5 | arrow |Charlie

Background 2: Trust mappingx

Alice <= Bob (100)

Alice <= Charlie  (50)

Bob < Alice (80)
Priorities”

Recent work on community databases:

Orchestra [SIGMOD’06, VLDB’07]

“Beliefs”: annotated

Indus script”

(key,value) pairs 100 80
Ul cow
2 2 fish
?5 | arrow

“Explicit belief”

50

U, |ship hull

Qz fish

t3 | arrow

“Implicit belief”

Ul jar
2, | knot
t3 | arrow

Youtopia [VLDB’09], BeliefDB [VLDB’09]

* Current state of knowledge on the Indus Script: Rao et al., Science 324(5931):1165, May 2009



Problems due to transient effects

1. Incorrect inserts
— Value depends on order of inserts

preferred Bob’s

6 Alice would have
value over Charlie’s

100

U cCow

Charlie

T

jar




Problems due to transient effects

1. Incorrect inserts
— Value depends on order of inserts

2. Incorrect updates
— Mis-handling of revokes

% Alice and Bob trust each

other most, but have lost
“justification” for their beliefs

Charlie

This paper:
(Automatic conflict resolution with trust mappings: h >><J( t,
U cow |t,

1. How to define a globally consistent solution?
2. How to calculate it efficiently?

3. Some extensions
\_ J




Agenda

1. Stable solutions
— how to define a unique and consistent solution?



Stable solutions

e Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

e Stable solution

— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

* each node with at least one ancestor with explicit belief

User A believes value v

Av B:w
1T0 1TO User D is
user C’s
Lizo& “preferred
N parent”
C:? D:?

/

User C has no explicit belief



Stable solutions

A:v B:w
e Priority trust network (TN) T
— assume a fixed key
10 10

— users (nodes): A, B, C

— values (beliefs): v, w, u _ A -

— trust mappings (arcs) from “parents” Lineage <20_/
C.v D:v

« Stable solution
— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

SS1=(A:v, B:w, C:v, D:v)

* each node with at least one ancestor with explicit belief



Stable solutions

e Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

e Stable solution

— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

e Possible / Certain semantics
— a stable solution determines, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions, per user

* each node with at least one ancestor with explicit belief

A:v B:w
T o
10 10

20
i‘(m)
C:w D:w

SS1=(A:v, B:w, C:v, D:v)
SS2=(A:v, B:w, C:w, D:w)

X poss(X) cert(X)
A {v} {v}

B {w} {w}

cC {vw} O

D {vww} O



Stable solutions 6

e Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

« Stable solution
— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

e Possible / Certain semantics
— a stable solution determines, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions, per user

* each node with at least one ancestor with explicit belief

Parent “B:w (10)” dominates

Is this a stable solution?

and is inconsistent with “E:u (5)”

A:v B:w E:u

!

10

.

r/

10 5

20—~
C:u D:u
SS1=(A:v, B:w, C:v, D:v, E:u)
SS2=(A:v, BW C:w, DW E:u)

N
Now how to
calculate
poss / cert ?

_ Y,

poss(X) cert(X)
{v} {v}

{w} {w}
{vww}
fvww} O

{u} {u}



Logic programs (LP) with stable model semantics

LP & Stable model semantics But solving LPs is hard ®

* “Declarative imperative”” 10,000
1,000 F
* Natural correspondence 100
Brave (credulous) reasoning & 10F
~ possible tuple semantics g 1
i= 01 F
R | —0 Dl
~ certain tuple semantics 00, 50 100 150 200
Size of the network™

* Previous work on consistent query
answering & peer data exchange

State-of-the-art LP solver

Greco et al. [TKDE’03]
Arenas et al. [TLP’03]
Barcelo, Bertossi [PADL’03]
Bertossi, Bravo [LPAR’07]

How can we calculate
poss / cert efficiently?

Cautious (skeptical) reasoning i

* keynote Joe Hellerstein
** size of the network = users + mappings; simple network of several “osciallators” (see paper) 10



Agenda

2. Resolution algorithm
— how to calculate the solution efficiently?

11



Resolution Algorithm

* Keep 2 sets: closed / open
Focus on binary trust network Initialize closed with explicit beliefs

closed

open

F\ preferred

\non-preferredx poss(X) cert(X)

{v} {v}
{w} {w}
{u} {u}

? ?

I
~FXSITIOogMMmMQoO >

B S B O R O S 'Y Y
VOTVOTV YtV "V Y



Resolution Algorithm

closed

open

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from

open to closed

— follow

poss(X) cert(X)

~N XS TITOMMOO > | X

{v}
{w}
{u}

?

B S B O R O S 'Y Y

{v}
{w}
{u}

?

B O R O R O S " S

13



Resolution Algorithm

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 4 preferred edges from
open to closed

— follow
X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E 7? ?
E ? ?
G ? ?
H ? ?
J ? ?
K ? ?
[ ? ?

14



Resolution Algorithm

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 4 preferred edges from
open to closed

— follow

closed

open X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E {w} {w}
F 7? ?
G ? ?
H ? ?
J ? ?
K ? ?
[ ? ?

15



Resolution Algorithm

A{vi eB{w} eu}

closed D{V}%E{W}?X) F{U}

open /
G H

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from
open to closed

— follow

X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E  {w} {w}
F o {u} {u}
G ? ?

H ? ?

J ? ?

K ? ?

[ ? ?

16



Resolution Algorithm

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 3 preferred edges from
open to closed
— follow

closed

open X poss(X) cert(X)
A {v} {v}
B {w} {w}
C A{u} {u}
D {v} {v}
E {w} {w}
F A{u} {u}
G ? ?
H {w} {w}
J ? ?
K ? ?
L ? ?



Resolution Algorithm

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN
Step 1: if 3 preferred edges from
® open to closed
A{V} B{W} *C{U} — follow
Step 2: else
— construct SCC graph of open
closed F{u}
open X poss(X) cert(X)
; A {v {v}
i B {w} {w}
“Minimal SCC” | e C {u} {u}
no incoming D {v} {v}
edge from ™} AT £ {w} {w}
other SCC e OK——>OL | Foo{u {u}
\\\ ————————————— O S G ? ?
_ Howh {w)
For every cyclic or acyclic directed graph: J ? ?
- The Strongly Connected Components graph is a DAG K2 ?
- can be calculated in O(n)  Tarjan [1972] L7 ?




Resolution Algorithm

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN
Step 1: if 3 preferred edges from
® open to closed
A{V} B{W} *C{U} — follow
Step 2: else
— construct SCC graph of open
—> resolve minimum SCCs
closed F{u}
open X poss(X) cert(X)
~~~~~~~~~ A {v {v}
B {w} {w}
“Minimal SCC” — C {u} {u}
no incoming D {v} {v}
edge from A E {w} {w}
otherscc 4 OHv,wi=OK{v,wioL | Fofu  {u)
N B G {vw} O
H {w} {w}
For every cyclic or acyclic directed graph: J {vw} O
- The Strongly Connected Components graph is a DAG LK {?V'W} ?

- can be calculated in O(n)  Tarjan [1972]




Resolution Algorithm

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 3 preferred edges from
to closed
’A{V} .B{W} ’C{U} open to ciose

— follow

Step 2: else
— construct SCC graph of open
—> resolve minimum SCCs

X poss(X) cert(X)
A {v} {v}
B {w} {w}
C {u} {u}
D {v} {v}
E  {w} {w}
F o {u} {u}

closed G {v,w} %)

— H {w} {w}

open J  A{v,w} %)
K {v,w} %)
L 7? ?



Resolution Algorithm

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs
* MAIN
Step 1: if 3 preferred edges from
open to closed
®A{v} eB{w} e({u}

— follow

Step 2: else
—> construct SCC graph of open
— resolve minimum SCCs

X poss(X) cert(X)

A v} {v}

H{w} B {w} {w}

C A{u} {u}

D {v} {v}

| E  {w} {w}

K{v,w}-OL{v,w,u} F o {u} {u}
closed G {v,w} %)

;en / H {w} {w}
PTIME resolution algorithm j( gxi g
O(n?) worst case [ {V:W, uy O

O(n) on reasonable graphs



Agenda

3. Extensions
— how to deal with “negative beliefs”?

22



3 semantics for negative beliefs Our recommendation

Agnostic Eclectic Skeptic

{v+} {w—} {v+} {w-} {v+} {w—}

J {w+} J {u+,v—,w-} J{L}
w/o cycles’ O(n) O(n) O(n)|
w cycles NP-hard™ NP-hard™ O(n?),

" assuming total order on parents for each node with a variation of resolution algorlthm

** checking if a belief is possible at a give node is NP-hard, checking if it is certain is co-NP-hard 23



Take-aways automatic conflict resolution

Problem
« Given explicit beliefs & trust mappings, how to assign
consistent value assignment to users?

Our solution

« Stable solutions with possible/certain value semantics
e PTIME algorithm [O(n?) worst case, O(n) experiments]
« Several extensions
— negative beliefs: 3 semantics, two hard, one O(n?)
( . )
— bulk inserts
— agreement checking

— consensus value
_— lineage computation

Ve in the paper & TR

J

Please visit us at the poster session Th, 3:30pm
or at: | http://db.cs.washington.edu/beliefDB

24


http://db.cs.washington.edu/beliefDB




1. Conflicts & Trust mappings in Community DBs

Background 1: Conflicting beliefs”

“Beliefs”: annotated
U, [ship hull| Alice (key,value) pairs

100 30

U; | cow |Bob

U, j‘ar Charlie s ow
Q5 fish |Bob ; P
%5, | knot |Charlie 2 S
43 | arrow |Charlie ?5 | arrow

“Explicit belief”

AIice >0
Background 2: Trust mappings

Alice < Bob (100) Ul Shlp hull
Alice <— Charlie  (50) §, | fish
Bob <— Alice (80) / $3 | arrow
Priorities/ “Implicit belief”
Ul jar
Recent work on community databases: f, | knot
t3 | arrow
Orchestra [SIGMOD’06, VLDB’07] _
Youtopia [VLDB’09], BeliefDB [VLDB’09] How to unambiguously
assign beliefs to all users?
* Current state of knowledge on the Indus Script: Rao et al., Science 324(5931):1165, May 2009 J




2. Stable solutions

o A: B: E:

e Priority trust network (TN) .V o .u
— assume a fixed key T /
— users (nodes): A, B, C 10 10 5

— values (beliefs): v, w, u M
— trust mappings (arcs) from “parents”  Lineage <20
C.v

: D:v
o Stable solution
— assignment of values to each node”, SS1=(A:v, B:w, C:v, D-v, E:u)
s.t. each belief has a “non-dominated SSZ=(A-v’ B'W’ C‘V\’/ D'\;v E:u)

lineage” to an explicit belief

« Possible / Certain semantics X _poss(X) cert(X)
— a stable solution determines, for each A {v} {v}
node, a possible value (“poss”) B {w} {w}
— certain value (“cert”) = intersection of c {vww}
all stable solutions, per user D {uw) O
E {u} {u}

* each node with at least one ancestor with explicit belief



3. Logic programs with stable model semantics

Step 1:

A B C D
Binarization .\K f/.
partial order \lg/

E preferred E non-preferred
parent parent
Step 2:
Logic program A\f ’:\\d/B
C C
1: accept all poss of preferred parent | F(CAY) < P(Ay), P(C.x), x=y
P(C,X) <« P(A,X) i P(Cly) < P(Aly)l _IF(CIAIy)
F(C,B,y) <= P(B,y), P(C,x), x=y F(C,B,y) <= P(B,y), P(C)x), x=y
P(C,y) <= P(B,y), =F(C,B,y 5 P(C,y) <= P(B,y), =F(C,B,y)

2: accept poss from non-preferred parent, that are not conflicting with an existing value



4. Resolution Algorithm (1/2)

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN

Step 1: if 4 preferred edges from

— follow

open to closed

poss(X) cert(X)

X

A {v}
B {w}
C {u}
D {v}
E ?
F ?
G ?
H ?

J ?
K ?

L ?

{v}
{w}
{u}
{v}

?

U U U U u w



5. Resolution Algorithm (2/2)

“Minimal SCC” }
can be calcu-\“\‘
lated in O(n)

Tarjan [1972]

PTIME resolution algorithm
O(n?) worst case
O(n) on reasonable graphs

» Keep 2 sets: closed / open
Initialize closed with explicit beliefs

* MAIN

Step 1: if 3 preferred edges from

open to closed

— follow
Step 2: else

— construct SCC graph of open
— resolve minimum SCCs

poss(X) cert(X)

{v}
{w}
{u}
{v}
{w}
{u}
{v,w}
{w}
{v,w}
{v,w}
?

~N XS TITOMMOO > | X

{v}
{w}
{u}
{v}
{w}
{u}

YR RT



6. Detail: Strongly Connected Components (SCCs)

For every cyclic or acyclic directed graph:

- The Strongly Connected Components graph is a DAG

- can be calculated in O(n) Tarjan [1972]

——————
-
-
-
L

“Minimal SCCs”: no incoming

_______________ / edge from other SCC

, =root node(s) in SCC graph

——————————

~
~~~~~

=
- —_—
- ~
~
- ~

~.
\h

---------

=
- ~_~~
N,

—————————

R .
- —_—
- ~
~
- ~

~ -
~ -
.........

’
pa
‘‘‘‘‘‘‘



7. Experiments on large network data

I 100
. . |
Calculating poss / cert for fixed key 1
- DLV: State-of-the art logic programming solver I o 10F
- RA: Resolution algorithm | -
. E o1
. | =
Network 1: “Oscillators” |
: 0.1r e — DLV
| , —0 RA
;©l ;©l l©l Y i B P SELLLLEL
. . . > | 10 100 1,000 10,000 100,000 1,000,000
8 16 24 size : 100
: 2
Network 2: “Web link data” | o
Web data set with 5.4m links between I F
270k domain names. Approach: I v
. L . . | £ 1
- Sample links with increasing ratio | =
Include both nodes in sample I
+ Assign explicit beliefs randomly | 0.1} —— Y
| —0 RA
| -- y=1e5x
| 0.01 '
| 10 100 1,000 10,000 100,000 1,000,000
| 100
3
|
I — 10
| g
! o
I € 1f
: =
|
| 01F —0 DLV
I =0 RA
' -- y=1le7x?
: 0.01 o
| 10 100 1,000 10,000 100,000 1,000,000
l Size of the network [users + mappings]




8. Three semantics for negative beliefs our recommendation

Agnostic Eclectic Skeptic
{v+} {w—} {v+} {w—} {v+} {w—}

J {w+} J {u+,v—,w-} J{L}
w/o cycles’ O(n) O(n) O(n)
w cycles NP-hard™ NP-hard™ O(n?).

" assuming total order on parents for each node with a variation of resolution algorlthm

** checking if a belief is possible at a give node is NP-hard, checking if it is certain is co-NP-hard



9. Take-aways automatic conflict resolution

Problem
« Given explicit beliefs & trust mappings, how to assign
consistent value assignment to users?

Our solution

« Stable solutions with possible/certain value semantics
e PTIME algorithm [O(n?) worst case, O(n) experiments]
« Several extensions
— negative beliefs: 3 semantics, two hard, one O(n?)
( . )
— bulk inserts
— agreement checking

— consensus value
_— lineage computation

/ not covered in the talk

J

Slides soon available on our project page:
http://db.cs.washington.edu/beliefDB



http://db.cs.washington.edu/beliefDB




Binarization for Resolution Algorithm”

Example Trust Network (TN) Corresponding Binary TN (BTN)
6 nodes, 9 arcs (size 15) 8 nodes, 12 arcs (size 20)
3 explicit beliefs: A:v, B:w, C:u

Size increase : < 3

A{v} B{w} C{u} A{v} B{w} C{u}
o1 oA
70 60 30 20 100
(RN
D E F

* Note that binarization is not necessary, but greatly simplifies the presentation

36



Stable solutions: example 2

e Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

« Stable solution
— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions

* each node with at least one ancestor with explicit belief

37



Stable solutions: example 2

e Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

« Stable solution
— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions

* each node with at least one ancestor with explicit belief

A\ :
60\0 E:w

poss(G) ={v,...}

38



Stable solutions: example 2

e Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

« Stable solution
— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions

* each node with at least one ancestor with explicit belief

poss(G) ={v,w,...}

39



Stable solutions: example 2

e Priority trust network (TN)
— assume a fixed key
— users (nodes): A, B, C
— values (beliefs): v, w, u
— trust mappings (arcs) from “parents”

« Stable solution
— assignment of values to each node’,
s.t. each belief has a “non-dominated
lineage” to an explicit belief

o Certain values
— all stable solution determine, for each
node, a possible value (“poss”)
— certain value (“cert”) = intersection of
all stable solutions

* each node with at least one ancestor with explicit belief

not stable!
F—G dominated by E—G

poss(G) = {v,w}
cert(G) =0

40



O(n?)-worst-case for Resolution Algorithm

41



