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(Some) Prior Work on Query Optimization

• Static Query Optimizers 
• cardinality & selectivity estimation , heuristics, cost 

models

• Adaptive Query Optimization 
• Query re-optimization (update cardinality & 

selectivity estimates) 
• Adaptive operators (scans, aggregates, etc.) 
• Eddies & adaptive tuple routing (operator 

reordering) 
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These work great, BUT…
• Designing good query optimizers takes time!

• Requires deep knowledge of the operators and significant 
development effort

• Spark SQL took 2 years to go from heuristics-based 
optimization to cost-based optimization! [1]

• Existing adaptive approaches just push the development 
overhead to physical execution

• Modern data processing applications involve diverse, 
sophisticated operators, not just relational operators!

4
[1] http://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2- 2.html 
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Generate Training Data from:

etc.

*Image Sourced from https://www.flickr.com/photos/silkebaron/32001215104
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*caption-generating model portion of the logical plan inspired by: Xu et al. Show, Attend and Tell: Neural Image Caption Generation 
with Visual Attention.  ICML 2015
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CNN
HTML
Data

Train a caption-
generating model

Output
ModelConv RNN

Repeat

Regex Join

Images

Filter
Generate

Training Labels

... Conv

*caption-generating model portion of the logical plan inspired by: Xu et al. Show, Attend and Tell: Neural Image Caption Generation 
with Visual Attention.  ICML 2015

Diverse, sophisticated operators, 
with multiple physical alternatives!
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Tested 3 convolution algorithms on 8000 Flickr images
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Prior Work: Tuning Black-box Operators
• Offline Autotuning 

• Searches through arbitrary physical plan spaces 
• Requires representative workloads 
• Offline training time

• Micro Adaptivity in Vectorwise 
• Reinforcement learning chooses physical flavors 

of black-box vectorized operators 
• Limited to vectorized operators, does not explore 

multi-core settings
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Workload developer (or the query optimizer) inserts calls to 
Cuttlefish’s API to pick physical operators during execution
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Tuner Lifecycle
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Workload developer (or the query optimizer) inserts calls to 
Cuttlefish’s API to pick physical operators during execution
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Workload developer (or the query optimizer) inserts calls to 
Cuttlefish’s API to pick physical operators during execution

Developer maps tuning rounds to the execution model of each operator:
• Regex: One round per HTML Doc

11

Cuttlefish: 
A Lightweight Primitive for Online Tuning



Tuner Lifecycle

Choose

Execute

Observe

Nest.
Loop
Mat.
Mult

Sort
FFT

Lib 2

Lib 3

Lib 4

Lib 1
HTML
Data

Join

Output
Model

Tuner

Filter

Regex Images

RNN

Repeat

CNN

Nest.
Loop
Mat.
Mult

FFT

...

Tuner

Hash

Tuner Tuner
ConvConv

Workload developer (or the query optimizer) inserts calls to 
Cuttlefish’s API to pick physical operators during execution

Developer maps tuning rounds to the execution model of each operator:
• Regex: One round per HTML Doc
• Convolve: One round per image

11

Cuttlefish: 
A Lightweight Primitive for Online Tuning



Tuner Lifecycle

Choose

Execute

Observe

Nest.
Loop
Mat.
Mult

Sort
FFT

Lib 2

Lib 3

Lib 4

Lib 1
HTML
Data

Join

Output
Model

Tuner

Filter

Regex Images

RNN

Repeat

CNN

Nest.
Loop
Mat.
Mult

FFT

...

Tuner

Hash

Tuner Tuner
ConvConv

Workload developer (or the query optimizer) inserts calls to 
Cuttlefish’s API to pick physical operators during execution

Developer maps tuning rounds to the execution model of each operator:
• Regex: One round per HTML Doc
• Convolve: One round per image
• Parallel Distributed Join: One round per partition

11

Cuttlefish: 
A Lightweight Primitive for Online Tuning



Cuttlefish

12

I. Problem & Motivation 

II. The Cuttlefish API 

III. Bandit-based Online Tuning 

IV. Distributed Tuning Approach 

V. Contextual Tuning 

VI. Handling Nonstationary Settings 

VII.Other Operators 

VIII.Conclusion



The Cuttlefish Primitive

13



1. Construct a tuner (from a set of choices)

The Cuttlefish Primitive

13



1. Construct a tuner (from a set of choices)

2. Tuner.choose (pick one of the choices)

The Cuttlefish Primitive

13



1. Construct a tuner (from a set of choices)

2. Tuner.choose (pick one of the choices)

3. Tuner.observe (observe a reward for a choice)

The Cuttlefish Primitive

13



1. Construct a tuner (from a set of choices)

2. Tuner.choose (pick one of the choices)

3. Tuner.observe (observe a reward for a choice)

Cuttlefish tuners maximize the total reward after 
multiple choose-observe tuning rounds

The Cuttlefish Primitive
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• K possible choices (called arms)

• Arms have unknown reward distributions

• At each round: select an Arm and observe a reward

Multi-armed Bandit Problem

Goal:  Maximize Cumulative Reward 
(by balancing exploration & exploitation)

Approach: Tuning
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Reward

Arm 1 Arm 2 Arm 3 Arm 4

Better arms chosen 
more often
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Thompson Sampling

• Gaussian runtimes with initially unknown means and variances

• Belief distributions form t-distributions 
• Depend only on sample mean, variance, count

• No meta-parameters, yet works well for diverse operators

• Constant memory overhead, 0.03 ms per tuning round
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Convolution Evaluation
• Prototype in Apache Spark

• Tune between three convolution algorithms (Nested Loops, FFT, or 
Matrix Multiply) 

• Reward: -1*elapsedTime (maximizes throughput)

• Convolve 8000 Flickr images with sets of filters (~32gb) 
• Vary number & size of filters

• Run on an 8-node (AWS EC2 4-core r3.xlarge) cluster.  
• 32 total cores, ~252 images per core

• *Very* compute intensive 
• (Some configs up to 45 min on a single node)
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Challenges in Distributed Tuning

1. Choosing and observing occur throughout a cluster 
• To maximize learning, need to communicate

2. Synchronization & communication overheads

3. Feedback delay 
• How many times is `choose’ called before an 

earlier reward is observed? 
• Fortunately, theoretically sound to have delays
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Machine 1

Machine 2

Machine 3

Choose/Observe

Centralized Tuner

Machine 1

Machine 2

Machine 3

Push Local / Pull Global

Global Model 
Store

Independent Tuners, 
Centralized Store

Peer-to-Peer is also a possibility, 
but requires more communication
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…

Local State

Thread 1
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Model Store

Non-local State

Local State
Non-local State

Thread 2 Thread 3

Worker 2:
Local State

Local State

Thread 1

Worker 2
Non-local State

Thread 2 Thread 3

Worker 1:
Local State

*On Master or a  
Parameter Server*

• When choosing: aggregate local & non-local state

• When observing: update the local state

• Model store aggregates non-local state
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Contextual Tuning
• Best physical operator for each round may depend 

on current context 

• e.g. convolution performance depends on the 
image & filter dimensions

• Users may know important context features 

• e.g. from the asymptotic algorithmic complexity

• Users can specify context in Tuner.choose
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Contextual Tuning Algorithm

• Linear contextual Thompson sampling learns a linear 
model that maps features to rewards

• Feature Normalization & Regularization 

• Increased robustness towards feature choices

• Effectively learns a cost model
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Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): … 
def fftConvolve(image, filters): … 
def mmConvolve(image, filters): … 
  

for image, filters in convolutions: 
  

start = now() 
result = convolve(image, filters) 
elapsedTime = now() - start 
reward = computeReward(elapsedTime) 

output result
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Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): … 
def fftConvolve(image, filters): … 
def mmConvolve(image, filters): … 
def  getDimensions(image, filters): … 

for image, filters in convolutions: 
context = getDimensions(image, filters) 

start = now() 
result = convolve(image, filters) 
elapsedTime = now() - start 
reward = computeReward(elapsedTime) 

output result
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tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose(context)

tuner.observe(token, reward)

context
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Nonstationary Settings
• Runtimes may drift over time, or differ across nodes 

• heterogenous cluster, changing resource availabilities, 
data properties varying throughout the workload, etc. 

• E.g. web crawl data and images may be stored sorted 
by website. This could correlate with performance

• We might not be capturing sufficient context! 

• Standard multi-armed bandit techniques fail
38



Nonstationary Settings

39



Nonstationary Settings
• Prior work: dynamic bandit approaches 

• Sliding windows, discounting older observations, reset on 
change detection, etc. 

• Good for dealing with changes over time

39



Nonstationary Settings
• Prior work: dynamic bandit approaches 

• Sliding windows, discounting older observations, reset on 
change detection, etc. 

• Good for dealing with changes over time

• Prior work: bandit clustering approaches 
• identify & share learning among agents solving similar 

bandit problems 
• Good for dealing with differences between cores

39



Nonstationary Settings
• Prior work: dynamic bandit approaches 

• Sliding windows, discounting older observations, reset on 
change detection, etc. 

• Good for dealing with changes over time

• Prior work: bandit clustering approaches 
• identify & share learning among agents solving similar 

bandit problems 
• Good for dealing with differences between cores

• Need dynamic bandit clustering where agents’ underlying 
problems may change over time!
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Store only one ‘aggregated old state’ per epoch

At epoch end:  If similar to old, merge into ‘old state’ . 
Otherwise, replace ‘old state’

Identify (& merge) similar non-local states only at 
communication rounds, in the centralized model store
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Throughput normalized against an ideal oracle 
that always picks the fastest algorithm
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• Tune between four regular expression searching libraries 
• Built-in Java Regex and 3 third-party libraries

• Search through 256k Common Crawl docs (~30gb uncompressed) 
• one tuning round per doc

• Test 8 Regexes sourced from regex-sharing website RegExr 
• Match hyperlinks, trigrams, valid emails, color codes, etc.

• Multiple of orders of magnitude variation in performance 
• Email validation regex w/ built-in java utilities takes 33μs to process 

the fastest document, but over 1000s for the slowest document

• 8-node (AWS EC2 4-core r3.xlarge) cluster
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Note: Y-axis is Log-scale
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• Hash-partition relations according to join attributes

• On each partition, pick a local hash join or a local sort-merge join

• Rewards capture total join time 
• measure from when joins begin until result iterators are fully consumed

• Set as Spark SQL 2.2’s join for all equijoins too large to broadcast 
• No heuristics and cost models in the query optimizer, falls back on 

explicit configurations (defaults to global sort-merge join)

• Test on TPC-DS benchmark (scale factor 200)

• Configure queries to use 512 shuffle / join partitions



Join Results (Query Throughput)

48



Join Results (Query Throughput)

48

But, requires exploration &  
provides no ‘special ordering’ benefits



Cuttlefish join usually faster 
(Join throughput graphs even more dramatic)

Join Results (Query Throughput)

48

But, requires exploration &  
provides no ‘special ordering’ benefits



Cuttlefish

49

I. Problem & Motivation 

II. The Cuttlefish API 

III. Bandit-based Online Tuning 

IV. Distributed Tuning Approach 

V. Contextual Tuning 

VI. Handling Nonstationary Settings 

VII.Other Operators 

VIII.Conclusion



Cuttlefish

50

• A simple, flexible API for online tuning
• Thompson-sampling based tuning algorithms
• Supports contextual tuning (learns cost models)
• Distributed learning between workers
• Adapts to nonstationary workloads
• Prototyped in Apache Spark & successfully tunes 

convolution, regex, and join operators


