
A Lightweight Primitive for Online Tuning

Cuttlefish
by Tomer Kaftan (UW), Magdalena Balazinska (UW), Alvin

Cheung (UW), Johannes Gehrke (Microsoft)

1

Logical Operators have multiple physical Operators…
The system should automatically choose!

Logical Operators have multiple physical Operators…
The system should automatically choose!

(Some) Prior Work on Query Optimization

3

(Some) Prior Work on Query Optimization

• Static Query Optimizers
• cardinality & selectivity estimation , heuristics, cost

models

3

(Some) Prior Work on Query Optimization

• Static Query Optimizers
• cardinality & selectivity estimation , heuristics, cost

models

• Adaptive Query Optimization
• Query re-optimization (update cardinality &

selectivity estimates)
• Adaptive operators (scans, aggregates, etc.)
• Eddies & adaptive tuple routing (operator

reordering)
3

These work great, BUT…

4

These work great, BUT…
• Designing good query optimizers takes time!

4

These work great, BUT…
• Designing good query optimizers takes time!

• Requires deep knowledge of the operators and significant
development effort

4

These work great, BUT…
• Designing good query optimizers takes time!

• Requires deep knowledge of the operators and significant
development effort

• Spark SQL took 2 years to go from heuristics-based
optimization to cost-based optimization! [1]

4
[1] http://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2- 2.html

These work great, BUT…
• Designing good query optimizers takes time!

• Requires deep knowledge of the operators and significant
development effort

• Spark SQL took 2 years to go from heuristics-based
optimization to cost-based optimization! [1]

• Existing adaptive approaches just push the development
overhead to physical execution

4
[1] http://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2- 2.html

These work great, BUT…
• Designing good query optimizers takes time!

• Requires deep knowledge of the operators and significant
development effort

• Spark SQL took 2 years to go from heuristics-based
optimization to cost-based optimization! [1]

• Existing adaptive approaches just push the development
overhead to physical execution

• Modern data processing applications involve diverse,
sophisticated operators, not just relational operators!

4
[1] http://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2- 2.html

Motivating Workload

5

Motivating Workload

“A Cuttlefish pretending to be a rock”

5

*Image Sourced from https://www.flickr.com/photos/silkebaron/32001215104

Motivating Workload

“A Cuttlefish pretending to be a rock”

5

Generate Training Data from:

etc.

*Image Sourced from https://www.flickr.com/photos/silkebaron/32001215104

Motivating Workload

6

CNN
HTML
Data

Train a caption-
generating model

Output
ModelConv RNN

Repeat

Regex Join

Images

Filter
Generate

Training Labels

... Conv

*caption-generating model portion of the logical plan inspired by: Xu et al. Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention. ICML 2015

Motivating Workload

6

CNN
HTML
Data

Train a caption-
generating model

Output
ModelConv RNN

Repeat

Regex Join

Images

Filter
Generate

Training Labels

... Conv

*caption-generating model portion of the logical plan inspired by: Xu et al. Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention. ICML 2015

Diverse, sophisticated operators,
with multiple physical alternatives!

Example Operator: Convolution

7

Example Operator: Convolution

7

Tested 3 convolution algorithms on 8000 Flickr images

Can we optimize without a full-fledged optimizer?

8

Prior Work: Tuning Black-box Operators

9

Prior Work: Tuning Black-box Operators
• Offline Autotuning

• Searches through arbitrary physical plan spaces
• Requires representative workloads
• Offline training time

9

Prior Work: Tuning Black-box Operators
• Offline Autotuning

• Searches through arbitrary physical plan spaces
• Requires representative workloads
• Offline training time

• Micro Adaptivity in Vectorwise
• Reinforcement learning chooses physical flavors

of black-box vectorized operators
• Limited to vectorized operators, does not explore

multi-core settings
9

Workload developer (or the query optimizer) inserts calls to
Cuttlefish’s API to pick physical operators during execution

Cuttlefish:
A Lightweight Primitive for Online Tuning

10

CNN
HTML
Data

Train a caption-
generating model

Output
ModelConv RNN

Repeat

Regex Join

Images

Filter
Generate

Training Labels

... Conv

Workload developer (or the query optimizer) inserts calls to
Cuttlefish’s API to pick physical operators during execution

Cuttlefish:
A Lightweight Primitive for Online Tuning

10

CNN
HTML
Data

Train a caption-
generating model

Output
ModelConv RNN

Repeat

Regex Join

Images

Filter
Generate

Training Labels

... Conv

Tuner Lifecycle

Choose

Execute

Observe

Nest.
Loop
Mat.
Mult

Sort
FFT

Lib 2

Lib 3

Lib 4

Lib 1
HTML
Data

Join

Output
Model

Tuner

Filter

Regex Images

RNN

Repeat

CNN

Nest.
Loop
Mat.
Mult

FFT

...

Tuner

Hash

Tuner Tuner
ConvConv

Workload developer (or the query optimizer) inserts calls to
Cuttlefish’s API to pick physical operators during execution

11

Cuttlefish:
A Lightweight Primitive for Online Tuning

Tuner Lifecycle

Choose

Execute

Observe

Nest.
Loop
Mat.
Mult

Sort
FFT

Lib 2

Lib 3

Lib 4

Lib 1
HTML
Data

Join

Output
Model

Tuner

Filter

Regex Images

RNN

Repeat

CNN

Nest.
Loop
Mat.
Mult

FFT

...

Tuner

Hash

Tuner Tuner
ConvConv

Workload developer (or the query optimizer) inserts calls to
Cuttlefish’s API to pick physical operators during execution

Developer maps tuning rounds to the execution model of each operator:

11

Cuttlefish:
A Lightweight Primitive for Online Tuning

Tuner Lifecycle

Choose

Execute

Observe

Nest.
Loop
Mat.
Mult

Sort
FFT

Lib 2

Lib 3

Lib 4

Lib 1
HTML
Data

Join

Output
Model

Tuner

Filter

Regex Images

RNN

Repeat

CNN

Nest.
Loop
Mat.
Mult

FFT

...

Tuner

Hash

Tuner Tuner
ConvConv

Workload developer (or the query optimizer) inserts calls to
Cuttlefish’s API to pick physical operators during execution

Developer maps tuning rounds to the execution model of each operator:
• Regex: One round per HTML Doc

11

Cuttlefish:
A Lightweight Primitive for Online Tuning

Tuner Lifecycle

Choose

Execute

Observe

Nest.
Loop
Mat.
Mult

Sort
FFT

Lib 2

Lib 3

Lib 4

Lib 1
HTML
Data

Join

Output
Model

Tuner

Filter

Regex Images

RNN

Repeat

CNN

Nest.
Loop
Mat.
Mult

FFT

...

Tuner

Hash

Tuner Tuner
ConvConv

Workload developer (or the query optimizer) inserts calls to
Cuttlefish’s API to pick physical operators during execution

Developer maps tuning rounds to the execution model of each operator:
• Regex: One round per HTML Doc
• Convolve: One round per image

11

Cuttlefish:
A Lightweight Primitive for Online Tuning

Tuner Lifecycle

Choose

Execute

Observe

Nest.
Loop
Mat.
Mult

Sort
FFT

Lib 2

Lib 3

Lib 4

Lib 1
HTML
Data

Join

Output
Model

Tuner

Filter

Regex Images

RNN

Repeat

CNN

Nest.
Loop
Mat.
Mult

FFT

...

Tuner

Hash

Tuner Tuner
ConvConv

Workload developer (or the query optimizer) inserts calls to
Cuttlefish’s API to pick physical operators during execution

Developer maps tuning rounds to the execution model of each operator:
• Regex: One round per HTML Doc
• Convolve: One round per image
• Parallel Distributed Join: One round per partition

11

Cuttlefish:
A Lightweight Primitive for Online Tuning

Cuttlefish

12

I. Problem & Motivation

II. The Cuttlefish API

III. Bandit-based Online Tuning

IV. Distributed Tuning Approach

V. Contextual Tuning

VI. Handling Nonstationary Settings

VII.Other Operators

VIII.Conclusion

The Cuttlefish Primitive

13

1. Construct a tuner (from a set of choices)

The Cuttlefish Primitive

13

1. Construct a tuner (from a set of choices)

2. Tuner.choose (pick one of the choices)

The Cuttlefish Primitive

13

1. Construct a tuner (from a set of choices)

2. Tuner.choose (pick one of the choices)

3. Tuner.observe (observe a reward for a choice)

The Cuttlefish Primitive

13

1. Construct a tuner (from a set of choices)

2. Tuner.choose (pick one of the choices)

3. Tuner.observe (observe a reward for a choice)

Cuttlefish tuners maximize the total reward after
multiple choose-observe tuning rounds

The Cuttlefish Primitive

13

Tuning Convolution with Cuttlefish

14

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

14

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

14

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

14

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

14

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

14

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

14

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

14

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

14

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose()

tuner.observe(token, reward)

Cuttlefish

15

I. Problem & Motivation

II. The Cuttlefish API

III.Bandit-based Online Tuning

IV. Distributed Tuning Approach

V. Contextual Tuning

VI. Handling Nonstationary Settings

VII.Other Operators

VIII.Conclusion

Approach: Tuning

16

Multi-armed Bandit Problem

Approach: Tuning

16

• K possible choices (called arms)

Multi-armed Bandit Problem

Approach: Tuning

16

• K possible choices (called arms)

• Arms have unknown reward distributions

Multi-armed Bandit Problem

Approach: Tuning

16

• K possible choices (called arms)

• Arms have unknown reward distributions

• At each round: select an Arm and observe a reward

Multi-armed Bandit Problem

Approach: Tuning

16

• K possible choices (called arms)

• Arms have unknown reward distributions

• At each round: select an Arm and observe a reward

Multi-armed Bandit Problem

Goal: Maximize Cumulative Reward
(by balancing exploration & exploitation)

Approach: Tuning

16

Thompson Sampling

17

Thompson Sampling

17

Reward

Arm 1 Arm 2 Arm 3 Arm 4

Belief distributions about expected reward

Thompson Sampling

18

Reward

Arm 1 Arm 2 Arm 3 Arm 4

Thompson Sampling

19

Reward

Arm 1 Arm 2 Arm 3 Arm 4

Thompson Sampling

19

Reward

Arm 1 Arm 2 Arm 3 Arm 4

Thompson Sampling

20

Reward

Arm 1 Arm 2 Arm 3 Arm 4

Thompson Sampling

21

Reward

Arm 1 Arm 2 Arm 3 Arm 4

Better arms chosen
more often

Thompson Sampling

22

Thompson Sampling

• Gaussian runtimes with initially unknown means and variances

22

Thompson Sampling

• Gaussian runtimes with initially unknown means and variances

• Belief distributions form t-distributions
• Depend only on sample mean, variance, count

22

Thompson Sampling

• Gaussian runtimes with initially unknown means and variances

• Belief distributions form t-distributions
• Depend only on sample mean, variance, count

• No meta-parameters, yet works well for diverse operators

22

Thompson Sampling

• Gaussian runtimes with initially unknown means and variances

• Belief distributions form t-distributions
• Depend only on sample mean, variance, count

• No meta-parameters, yet works well for diverse operators

• Constant memory overhead, 0.03 ms per tuning round

22

Convolution Evaluation

23

Convolution Evaluation
• Prototype in Apache Spark

23

Convolution Evaluation
• Prototype in Apache Spark

• Tune between three convolution algorithms (Nested Loops, FFT, or
Matrix Multiply)

• Reward: -1*elapsedTime (maximizes throughput)

23

Convolution Evaluation
• Prototype in Apache Spark

• Tune between three convolution algorithms (Nested Loops, FFT, or
Matrix Multiply)

• Reward: -1*elapsedTime (maximizes throughput)

• Convolve 8000 Flickr images with sets of filters (~32gb)
• Vary number & size of filters

23

Convolution Evaluation
• Prototype in Apache Spark

• Tune between three convolution algorithms (Nested Loops, FFT, or
Matrix Multiply)

• Reward: -1*elapsedTime (maximizes throughput)

• Convolve 8000 Flickr images with sets of filters (~32gb)
• Vary number & size of filters

• Run on an 8-node (AWS EC2 4-core r3.xlarge) cluster.
• 32 total cores, ~252 images per core

23

Convolution Evaluation
• Prototype in Apache Spark

• Tune between three convolution algorithms (Nested Loops, FFT, or
Matrix Multiply)

• Reward: -1*elapsedTime (maximizes throughput)

• Convolve 8000 Flickr images with sets of filters (~32gb)
• Vary number & size of filters

• Run on an 8-node (AWS EC2 4-core r3.xlarge) cluster.
• 32 total cores, ~252 images per core

• *Very* compute intensive
• (Some configs up to 45 min on a single node)

23

Convolution Results

24

Relative throughput normalized against
the highest-throughput algorithm

Convolution Results

24

Relative throughput normalized against
the highest-throughput algorithm

Convolution Results

24

Relative throughput normalized against
the highest-throughput algorithm

Cuttlefish

25

I. Problem & Motivation

II. The Cuttlefish API

III. Bandit-based Online Tuning

IV. Distributed Tuning Approach

V. Contextual Tuning

VI. Handling Nonstationary Settings

VII.Other Operators

VIII.Conclusion

Challenges in Distributed Tuning

26

Challenges in Distributed Tuning

1. Choosing and observing occur throughout a cluster
• To maximize learning, need to communicate

26

Challenges in Distributed Tuning

1. Choosing and observing occur throughout a cluster
• To maximize learning, need to communicate

2. Synchronization & communication overheads

26

Challenges in Distributed Tuning

1. Choosing and observing occur throughout a cluster
• To maximize learning, need to communicate

2. Synchronization & communication overheads

3. Feedback delay
• How many times is `choose’ called before an

earlier reward is observed?
• Fortunately, theoretically sound to have delays

26

Distributed Tuning Approach

27

Distributed Tuning Approach

27

Machine 1

Machine 2

Machine 3

Choose/Observe

Centralized Tuner

Distributed Tuning Approach

27

Machine 1

Machine 2

Machine 3

Choose/Observe

Centralized Tuner

Machine 1

Machine 2

Machine 3

Push Local / Pull Global

Global Model
Store

Independent Tuners,
Centralized Store

Distributed Tuning Approach

27

Machine 1

Machine 2

Machine 3

Choose/Observe

Centralized Tuner

Machine 1

Machine 2

Machine 3

Push Local / Pull Global

Global Model
Store

Independent Tuners,
Centralized Store

Distributed Tuning Approach

27

Machine 1

Machine 2

Machine 3

Choose/Observe

Centralized Tuner

Machine 1

Machine 2

Machine 3

Push Local / Pull Global

Global Model
Store

Independent Tuners,
Centralized Store

Peer-to-Peer is also a possibility,
but requires more communication

Distributed Tuning Approach

28

…

Local State

Thread 1

Worker 1
Model Store

Non-local State

Local State
Non-local State

Thread 2 Thread 3

Worker 2:
Local State

Local State

Thread 1

Worker 2
Non-local State

Thread 2 Thread 3

Worker 1:
Local State

*On Master or a
Parameter Server*

Distributed Tuning Approach

28

…

Local State

Thread 1

Worker 1
Model Store

Non-local State

Local State
Non-local State

Thread 2 Thread 3

Worker 2:
Local State

Local State

Thread 1

Worker 2
Non-local State

Thread 2 Thread 3

Worker 1:
Local State

*On Master or a
Parameter Server*

Distributed Tuning Approach

28

…

Local State

Thread 1

Worker 1
Model Store

Non-local State

Local State
Non-local State

Thread 2 Thread 3

Worker 2:
Local State

Local State

Thread 1

Worker 2
Non-local State

Thread 2 Thread 3

Worker 1:
Local State

*On Master or a
Parameter Server*

• When choosing: aggregate local & non-local state

Distributed Tuning Approach

28

…

Local State

Thread 1

Worker 1
Model Store

Non-local State

Local State
Non-local State

Thread 2 Thread 3

Worker 2:
Local State

Local State

Thread 1

Worker 2
Non-local State

Thread 2 Thread 3

Worker 1:
Local State

*On Master or a
Parameter Server*

• When choosing: aggregate local & non-local state

• When observing: update the local state

Distributed Tuning Approach

28

…

Local State

Thread 1

Worker 1
Model Store

Non-local State

Local State
Non-local State

Thread 2 Thread 3

Worker 2:
Local State

Local State

Thread 1

Worker 2
Non-local State

Thread 2 Thread 3

Worker 1:
Local State

*On Master or a
Parameter Server*

• When choosing: aggregate local & non-local state

• When observing: update the local state

• Model store aggregates non-local state

Results with Distributed Approach

29

Relative throughput normalized against
the highest-throughput algorithm

Results with Distributed Approach

30

Throughput normalized against an ideal oracle
that always picks the fastest algorithm

Results with Distributed Approach

30

Throughput normalized against an ideal oracle
that always picks the fastest algorithm

Cuttlefish

31

I. Problem & Motivation

II. The Cuttlefish API

III. Bandit-based Online Tuning

IV. Distributed Tuning Approach

V. Contextual Tuning (by learning cost models)

VI. Handling Nonstationary Settings

VII.Other Operators

VIII.Conclusion

Contextual Tuning

32

Contextual Tuning
• Best physical operator for each round may depend

on current context

• e.g. convolution performance depends on the
image & filter dimensions

32

Contextual Tuning
• Best physical operator for each round may depend

on current context

• e.g. convolution performance depends on the
image & filter dimensions

• Users may know important context features

• e.g. from the asymptotic algorithmic complexity

32

Contextual Tuning
• Best physical operator for each round may depend

on current context

• e.g. convolution performance depends on the
image & filter dimensions

• Users may know important context features

• e.g. from the asymptotic algorithmic complexity

• Users can specify context in Tuner.choose
32

Contextual Tuning Algorithm

33

Contextual Tuning Algorithm

• Linear contextual Thompson sampling learns a linear
model that maps features to rewards

33

Contextual Tuning Algorithm

• Linear contextual Thompson sampling learns a linear
model that maps features to rewards

• Feature Normalization & Regularization

• Increased robustness towards feature choices

33

Contextual Tuning Algorithm

• Linear contextual Thompson sampling learns a linear
model that maps features to rewards

• Feature Normalization & Regularization

• Increased robustness towards feature choices

• Effectively learns a cost model

33

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …

for image, filters in convolutions:

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

34

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose()

tuner.observe(token, reward)

Tuning Convolution with Cuttlefish

def loopConvolve(image, filters): …
def fftConvolve(image, filters): …
def mmConvolve(image, filters): …
def getDimensions(image, filters): …

for image, filters in convolutions:
context = getDimensions(image, filters)

start = now()
result = convolve(image, filters)
elapsedTime = now() - start
reward = computeReward(elapsedTime)

output result

35

tuner = Tuner([loopConvolve, fftConvolve, mmConvolve])

convolve, token = tuner.choose(context)

tuner.observe(token, reward)

context

Contextual Convolution Results

36

Throughput normalized against an ideal oracle
that always picks the fastest algorithm

Cuttlefish

37

I. Problem & Motivation

II. The Cuttlefish API

III. Bandit-based Online Tuning

IV. Distributed Tuning Approach

V. Contextual Tuning

VI.Handling Nonstationary Settings

VII.Other Operators

VIII.Conclusion

Nonstationary Settings

38

Nonstationary Settings
• Runtimes may drift over time, or differ across nodes

• heterogenous cluster, changing resource availabilities,
data properties varying throughout the workload, etc.

• E.g. web crawl data and images may be stored sorted
by website. This could correlate with performance

38

Nonstationary Settings
• Runtimes may drift over time, or differ across nodes

• heterogenous cluster, changing resource availabilities,
data properties varying throughout the workload, etc.

• E.g. web crawl data and images may be stored sorted
by website. This could correlate with performance

• We might not be capturing sufficient context!

38

Nonstationary Settings
• Runtimes may drift over time, or differ across nodes

• heterogenous cluster, changing resource availabilities,
data properties varying throughout the workload, etc.

• E.g. web crawl data and images may be stored sorted
by website. This could correlate with performance

• We might not be capturing sufficient context!

• Standard multi-armed bandit techniques fail
38

Nonstationary Settings

39

Nonstationary Settings
• Prior work: dynamic bandit approaches

• Sliding windows, discounting older observations, reset on
change detection, etc.

• Good for dealing with changes over time

39

Nonstationary Settings
• Prior work: dynamic bandit approaches

• Sliding windows, discounting older observations, reset on
change detection, etc.

• Good for dealing with changes over time

• Prior work: bandit clustering approaches
• identify & share learning among agents solving similar

bandit problems
• Good for dealing with differences between cores

39

Nonstationary Settings
• Prior work: dynamic bandit approaches

• Sliding windows, discounting older observations, reset on
change detection, etc.

• Good for dealing with changes over time

• Prior work: bandit clustering approaches
• identify & share learning among agents solving similar

bandit problems
• Good for dealing with differences between cores

• Need dynamic bandit clustering where agents’ underlying
problems may change over time!

39

Possible Solution

40

Observations

A
ge

nt
s

(c
or

e
or

 m
ac

hi
ne

)

Possible Solution

41

Observations

A
ge

nt
s

(c
or

e
or

 m
ac

hi
ne

)

Possible Solution

41

Observations

A
ge

nt
s

(c
or

e
or

 m
ac

hi
ne

)

Use all epochs that pass a statistical similarity test

Possible Solution

41

Observations

A
ge

nt
s

(c
or

e
or

 m
ac

hi
ne

)

Use all epochs that pass a statistical similarity test

To Lower Overheads

42

Observations

A
ge

nt
s

(c
or

e
or

 m
ac

hi
ne

)

Store only one ‘aggregated old state’ per epoch

To Lower Overheads

42

Observations

A
ge

nt
s

(c
or

e
or

 m
ac

hi
ne

)

Store only one ‘aggregated old state’ per epoch

At epoch end: If similar to old, merge into ‘old state’ .
Otherwise, replace ‘old state’

To Lower Overheads

42

Observations

A
ge

nt
s

(c
or

e
or

 m
ac

hi
ne

)

Store only one ‘aggregated old state’ per epoch

At epoch end: If similar to old, merge into ‘old state’ .
Otherwise, replace ‘old state’

Identify (& merge) similar non-local states only at
communication rounds, in the centralized model store

Nonstationary Results

43

Throughput normalized against an ideal oracle
that always picks the fastest algorithm

Cuttlefish

44

I. Problem & Motivation

II. The Cuttlefish API

III. Bandit-based Online Tuning

IV. Distributed Tuning Approach

V. Contextual Tuning

VI. Handling Nonstationary Settings

VII.Other Operators

VIII.Conclusion

Regex Operator

45

Regex Operator

45

• Tune between four regular expression searching libraries
• Built-in Java Regex and 3 third-party libraries

Regex Operator

45

• Tune between four regular expression searching libraries
• Built-in Java Regex and 3 third-party libraries

• Search through 256k Common Crawl docs (~30gb uncompressed)
• one tuning round per doc

Regex Operator

45

• Tune between four regular expression searching libraries
• Built-in Java Regex and 3 third-party libraries

• Search through 256k Common Crawl docs (~30gb uncompressed)
• one tuning round per doc

• Test 8 Regexes sourced from regex-sharing website RegExr
• Match hyperlinks, trigrams, valid emails, color codes, etc.

Regex Operator

45

• Tune between four regular expression searching libraries
• Built-in Java Regex and 3 third-party libraries

• Search through 256k Common Crawl docs (~30gb uncompressed)
• one tuning round per doc

• Test 8 Regexes sourced from regex-sharing website RegExr
• Match hyperlinks, trigrams, valid emails, color codes, etc.

• Multiple of orders of magnitude variation in performance
• Email validation regex w/ built-in java utilities takes 33μs to process

the fastest document, but over 1000s for the slowest document

Regex Operator

45

• Tune between four regular expression searching libraries
• Built-in Java Regex and 3 third-party libraries

• Search through 256k Common Crawl docs (~30gb uncompressed)
• one tuning round per doc

• Test 8 Regexes sourced from regex-sharing website RegExr
• Match hyperlinks, trigrams, valid emails, color codes, etc.

• Multiple of orders of magnitude variation in performance
• Email validation regex w/ built-in java utilities takes 33μs to process

the fastest document, but over 1000s for the slowest document

• 8-node (AWS EC2 4-core r3.xlarge) cluster

Regex Results

46

Note: Y-axis is Log-scale

Distributed Parallel Join Operator

47

Distributed Parallel Join Operator

47

• Hash-partition relations according to join attributes

Distributed Parallel Join Operator

47

• Hash-partition relations according to join attributes

• On each partition, pick a local hash join or a local sort-merge join

Distributed Parallel Join Operator

47

• Hash-partition relations according to join attributes

• On each partition, pick a local hash join or a local sort-merge join

• Rewards capture total join time
• measure from when joins begin until result iterators are fully consumed

Distributed Parallel Join Operator

47

• Hash-partition relations according to join attributes

• On each partition, pick a local hash join or a local sort-merge join

• Rewards capture total join time
• measure from when joins begin until result iterators are fully consumed

• Set as Spark SQL 2.2’s join for all equijoins too large to broadcast
• No heuristics and cost models in the query optimizer, falls back on

explicit configurations (defaults to global sort-merge join)

Distributed Parallel Join Operator

47

• Hash-partition relations according to join attributes

• On each partition, pick a local hash join or a local sort-merge join

• Rewards capture total join time
• measure from when joins begin until result iterators are fully consumed

• Set as Spark SQL 2.2’s join for all equijoins too large to broadcast
• No heuristics and cost models in the query optimizer, falls back on

explicit configurations (defaults to global sort-merge join)

• Test on TPC-DS benchmark (scale factor 200)

Distributed Parallel Join Operator

47

• Hash-partition relations according to join attributes

• On each partition, pick a local hash join or a local sort-merge join

• Rewards capture total join time
• measure from when joins begin until result iterators are fully consumed

• Set as Spark SQL 2.2’s join for all equijoins too large to broadcast
• No heuristics and cost models in the query optimizer, falls back on

explicit configurations (defaults to global sort-merge join)

• Test on TPC-DS benchmark (scale factor 200)

• Configure queries to use 512 shuffle / join partitions

Join Results (Query Throughput)

48

Join Results (Query Throughput)

48

But, requires exploration &
provides no ‘special ordering’ benefits

Cuttlefish join usually faster
(Join throughput graphs even more dramatic)

Join Results (Query Throughput)

48

But, requires exploration &
provides no ‘special ordering’ benefits

Cuttlefish

49

I. Problem & Motivation

II. The Cuttlefish API

III. Bandit-based Online Tuning

IV. Distributed Tuning Approach

V. Contextual Tuning

VI. Handling Nonstationary Settings

VII.Other Operators

VIII.Conclusion

Cuttlefish

50

• A simple, flexible API for online tuning
• Thompson-sampling based tuning algorithms
• Supports contextual tuning (learns cost models)
• Distributed learning between workers
• Adapts to nonstationary workloads
• Prototyped in Apache Spark & successfully tunes

convolution, regex, and join operators

