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ABSTRACT
We explore the idea of using deep reinforcement learning for query
optimization. The approach is to build queries incrementally by
encoding properties of subqueries using a learned representation.

In this paper, we focus specifically on the state representation
problem and the formation of the state transition function. We show
preliminary results and discuss how we can use the state representa-
tion to improve query optimization using reinforcement learning.
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1 INTRODUCTION
Query optimization is not a solved problem, and existing database
management systems (DBMSs) still choose poor execution plans for
some queries [5]. Because query optimization must be efficient in
time and resources, existing DBMSs implement a key step of cardi-
nality estimation by making simplifying assumptions about the data
(e.g., inclusion principle, uniformity or independence assumptions).
When these assumptions do not hold, cardinality estimation errors
occur, leading to sub-optimal plan selections [5].

Recently, thanks to dropping hardware costs and growing datasets
available for training, deep learning has successfully been applied
to solving computationally intensive learning tasks in other domains.
The advantage of these type of models comes from their ability to
learn unique patterns and features of the data that are difficult to
manually find or design [3].

In this paper, we explore the idea of training a deep learning model
to predict query cardinalities. Instead of relying entirely on basic
statistics and formulas to estimate cardinalities, we train a model to
automatically learn important properties of the data to more accu-
rately infer these estimates. Importantly, we use that model to learn
subquery representations that can serve to derive the representation,
and cardinality, of more complex queries and that can serve to build
query plans bottom-up using deep reinforcement learning. As of
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Figure 1: Given a database and a query, we use a neural net-
work to generate a subquery representation. This representa-
tion can serve for cardinality estimation and for incrementally
building query plans using reinforcement learning.

today, there are few studies that have used deep learning techniques
to solve database problems, although some have started to raise
awareness for the potential of this method in our field [14]. Now
is the time to explore this space, since we have the computational
capabilities to run these models. In particular, we make two contri-
butions in this paper: A succinct way of representing the state of
a table (or subquery) using deep learning, and a principled way to
enumerate plans for a given query using those states together with
reinforcement learning.

State Representation. A key challenge of this approach is how
to represent queries and data. As a first contribution, we develop
an approach that learns to incrementally generate a succinct repre-
sentation of each subquery’s intermediate results: The model takes
as input a subquery and a new operation to predict the resulting
subquery’s representation. This representation can serve to derive
the subquery’s cardinality (Section 3).

Query Plan Enumeration. We also present an initial approach
to using these representations to enumerate query plans through
reinforcement learning. Reinforcement learning is a general purpose
framework used for decision-making in contexts where a system
learns by trial and error from rewards and punishment. We propose to
use this approach to incrementally build a query plan by modeling it
as a Markov process, where each decision is based on the properties
of each state. Figure 1 illustrates our approach to query optimization.
Given a query and a database, the model incrementally builds a
query plan through a series of state transitions. In the initial state t
in the figure, the system begins with a representation of the entire
database. Given an action selected using reinforcement learning, the
model transitions to a new state at t + 1, having now constructed a
larger subquery. Each action represents a query operation and each
state captures a representation of the subquery’s intermediate results.
We train a state transition function (a neural network), NNST , to
generate this representation. NNST is a recursive function that takes
as input a previous subquery representation as well as an action at
time t , to produce the subquery representation for time t + 1.
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Figure 2: Learning the State Transition Function NNST : Given
any ht and at , we can extract a representation of a sub-
query through NNST . We train the function NNST by predict-
ing properties from a set of observed variables. The function
NNObserved defines the mapping between the hidden state and
these observed variables.

Let us now motivate the setup that is laid out in Figure 1. Consider
the dynamics of a query plan that is built bottom-up, one operation
(action) at a time. At any stage t of the query plan, let’s say a
subquery has been built; let ht , the state at t be represented by
an n-dimensional real vector. Applying the next action, at to this
current database state leads to the next state, ht+1. The mapping,
NNST : (ht ,at ) → ht+1 is called the state transition function. In
most applications of reinforcement learning, the state as well as the
state transition function are known. For example, in the game of Go,
each possible board position is a state and the process of moving
from one board position to the next (the transition) is well-defined.
Unfortunately, in the case of query plan enumeration, we cannot
easily anticipate the state. The crux of our approach is to represent
each state by using a finite dimensional real vector and learn the
state transition function using a deep learning model. To guide the
training process for this network, we use input signals and context
defined from observed variables that are intimately associated with
the state of the database. For example, throughout this work, we
use the cardinality of each subquery at any stage of the plan as an
observed variable. If a stateht is represented succinctly with the right
amount of information, then we should be able to learn a function,
NNobserved , which maps this state to predicted cardinalities at stage
t . We show both NNST and NNobserved in Figure 2. As we train
this model, the parameters of the networks will adjust accordingly
based on longer sequences of query operations. With this model,
each state will learn to accurately capture a representation. Once
trained, we can fix this model and apply reinforcement learning
to design an optimal action policy, leading to good query plans
(Section 4).

Before describing our approach in more detail, we first briefly
survey fundamental concepts about deep learning and reinforcement
learning in the following section.

2 BACKGROUND
Deep Learning Deep learning models, also known as feedforward
neural networks, are able to approximate a non-linear function, f [3].
These models define a mapping from an input x to an output y,
through a set of learned parameters across several layers, θ . During
training, the behavior of the inner layers are not defined by the
input data, instead these models must learn how to use the layers
to produce the correct output. Since there is no direct interaction

between the layers and the input training data, these layers are called
hidden layers [3].

These feedforward networks are critical in the context of repre-
sentation learning. While training to meet some objective function, a
neural network’s hidden layers can indirectly learn a representation,
which could then be used for other tasks [3]. There is a trade-off
between preserving as much information as possible and learning
useful properties about the data. Depending on the output of the
network, the context of these representations can vary [3].

Reinforcement Learning Reinforcement learning models are
able to map scenarios to appropriate actions, with the goal of maxi-
mizing a cumulative reward. Unlike supervised learning, the learner
(the aдent) is not explicitly shown which action is best. Instead, the
agent must discover the best action through trial and error by either
exploiting current knowledge or exploring unknown states [11]. At
each timestep, t , the agent will observe a state of the environment,
st and will select an action, at . The action selected depends on the
policy, π . This policy can reenact several types of behaviors. As
an example, it can either act greedily or balance between explo-
ration and exploitation through an ϵ-greedy (or better) approach.
The policy is driven by the expected rewards of each state, which the
model must learn. Given the action selected, the model will arrive
at a new state, st+1. The environment then sends the agent a reward,
rt+1, signaling the “goodness” of the action selected. The agent’s
goal is to maximize this total reward [11]. One approach is to use a
value-based iteration technique, where the model records state-action
values, QL(s,a). These values specify the long-term desirability of
the state by taking into account the rewards for the states that are
likely to follow [11].

3 LEARNING A QUERY REPRESENTATION
Given as input a database D and a query Q , the first component
of our approach is to apply deep learning to derive compact, yet
informative representations of queries and the relations they produce.
To ensure that these representations are informative, we focus on
training these representations to predict subquery cardinalities.

3.1 Approach
There are two approaches that we could take. In the first approach,
we could transform (Q,D) into a feature vector and train a deep
network to take such vectors as input and output a cardinality value.
As discussed in the introduction, the problem with this approach
is that the size of the feature vector would have to grow with the
complexity of databases and queries. This would result in very long,
sparse vectors, which would require large training datasets.

Instead, we take a different approach, a recursive approach: We
train a model to predict the cardinality of a query consisting of a
single relational operation applied to a subquery as illustrated in
Figure 2. This model takes as input a pair (ht ,at ), where ht is a
vector representation of a subquery, while at is a single relational
operation on ht . Importantly, ht is not a manually specified feature
vector, but it is the latent representation that the model learns itself.
The NNST function generates these representations by adjusting the
weights based on feedback from the NNObserved function. This
NNObserved function learns to map a subquery representation to
predict a set of observed variables. As we train this model, we use
back propagation to adjust the weights for both functions. In this
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Figure 3: Combined Models NNinit and NNST

work, we only focus on predicting cardinalities, but we could extend
the model to learn representations that enable us to capture additional
properties such as more detailed value distributions or features of
query execution plans, such as their memory footprint or runtime.

Before using the recursive NNST model, we must learn an ad-
ditional function, NNinit , as shown in Figure 3. NNinit takes as
input (x0,a0), where x0 is a vector that captures the properties of
the database D and a0 is a single relational operator. The model
outputs the cardinality of the subquery that executes the operation
encoded in a0 on D. We define the vector, x0 to represent simple
properties of the database, D. The list of properties we provide next
is not definitive and more features can certainly be added. Currently,
for each attribute in the dataset D, we use the following features
to define x0: the min value, the max value, the number of distinct
values, and a representation of a 1-D equi-width histogram.

As shown in the figure, we then include the recursive model,
NNST , that takes (ht ,at ) as input and predicts the observed variables
of the subqueries as well as the representation, ht+1 of the new
subquery. We combine these models to train them together. During
training, the weights are adjusted based on the combined loss from
observed variable predictions. We want to learn an h1 representation
that captures not only enough information to predict the cardinality
of that subquery but of other subqueries built by extending it.

3.2 Preliminary Results
We use the publicly available Internet Movie Data Base (IMDB)

data set from the Join Order Benchmark (JOB) [5]. Unlike TPC-
H and TPC-DS, the IMDB data set is real and includes skew and
correlations across columns [5]. In our experiments, we use Python
Tensorflow to implement our approach [1].

Training NNinit : As a first experiment, we initialize x0 with
properties of the IMDB dataset and train NNinit to learn h1. a0
represents a conjunctive selection operation overm attributes from
the aka_title relation. We generate 20k unique queries, where 15k
are used for training the model and the rest are used for testing.
NNinit contains 50 hidden nodes in the hidden layer. We update the
model via stochastic gradient descent with a loss based on relative
error and a learning rate of .01.

In Figure 4a, we show the cardinality estimation results for se-
lection queries where m = 3. On the x-axis, we show the number
of epochs used during training and on the y-axis we show the rel-
ative error with the error bars representing the standard deviation.
We compare our approach NNModel to estimates from a popular
commercial DBMS. We use a commercial engine to ensure a strong
baseline. With fewer epochs (less training) the NNinit ’s cardinality
predictions result in significant errors, but at the 6th epoch, the model
performs similarly to the commercial system and then it starts to

(a) Predicting Cardinality (m = 3) (b) Predicting Cardinality (m = 5)

Figure 4: Learning h1 for Selection Query

(a) Cardinality Predictions from
NNobserved and h1

(b) Cardinality Predictions from
NNobserved and h2

Figure 5: Learning Cardinalities on the Combined Model

outperform it. We have also observed that increasing the number of
training examples reduces the error variance.

In Figure 4b, we increase the number of columns in the selec-
tion to m = 5. In general, we observe that NNinit takes longer
to converge once more columns are introduced. This is expected,
as NNinit must learn about more joint distributions across more
columns. Nevertheless, the model still manages to improve on the
commercial engine’s estimates by the 9th epoch.

Training NNinit and NNST : In the previous experiment, we
only trained the NNinit model for selection queries over base data.
For this next experiment, we predict the cardinality of a query con-
taining both a selection and join operation by using the combined
model. Here, a0 represents the selection, while the subsequent ac-
tion a1 represents the join. Through this combined model, we can
ensure that h1 (the hidden state for the selection) captures enough
information to be able to predict the cardinality after the join. In
Figure 5, we show the cardinality prediction for h1 and h2. In these
scatter plots, the x-axis shows the real cardinality, while the y-axis
shows the predicted cardinality from the model. Although there is
some variance, h1 was able to hold enough information about the
underlying data to make reasonable predictions for h2.

Training this model takes ∼535 seconds for 100 epochs. Cardi-
nality predictions for each query takes ∼.0004 seconds on average.

4 QUERY PLAN ENUMERATION WITH
REINFORCEMENT LEARNING

In this section, we present and discuss our design to leverage the
subquery representations from the section above, not only to estimate
cardinalities, but to build query plans. Given a query, Q , we seek to
identify a good query plan by combining our query representations
from NNST with reinforcement learning.

We assume a model-free environment, where transition proba-
bilities between states are not known. At s0, the model only knows
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about D and Q . No query operations have yet taken place. The agent
transitions to a new state by selecting an operation from query Q . At
each state, we encode an additional contextual vector, ut , which ex-
presses the operations that remain to be done forQ . We now describe
how to initialize the vector u0 at time 0:

Given databaseD, we have a set ofn relations R = {rel1, ..., reln },
where each reli contains a set ofm attributes {atti0 , ...,attim }. The
vector ut represents a fixed set of equi-join predicates and one-
dimensional selection predicates, C = {c1, ...cp }. We set the i-th
coordinate in C accordingly if the corresponding predicate exists in
the query Q . For example, c1 could represent the following equi-join
predicate, rel1.att10 = rel2.att23 . If this predicate exists in Q we
encode it in ut by updating the value of c1 to 1, otherwise we set it to
0. For selections, we track one-dimensional ranged selections of the
following form: reli .atti j <= v. For now, we allow each attribute to
have at most one ranged filter in Q . If the selection predicate exists
in Q , we place the value v in the corresponding element in C. Once
the agent selects an action (query operation), at , we can update ut
by setting the corresponding element to 0.

To select good query plans, we need to provide the model with
a reward. This reward must either be given at each state or once
the entire query plan has been constructed. Currently, we are using
the negative of our system’s cardinality estimates at each step. The
limitation is that this approach only optimizes logical query plans.
We plan to extend the reward function in future work to also capture
physical query plan properties. In particular, one approach is to use
the negative of the query execution time as the reward.

Ultimately, the goal of the agent is to discover an optimal policy,
π∗, which determines which action the agent will take given the
state. As the agent explores the states, the model can update the
state-action values for the function QL(s,a), through Q-learning. Q-
learning is an off-policy algorithm, that uses two different policies to
ensure convergence of the state-action values [9, 11, 12]. One is a
behavior policy, which determines which actions to select next. In
practice, this is usually an ϵ-greedy policy [8, 9], but other policies
can be used as well. The other is the target policy, usually a greedy
strategy, which determines how values should be updated.

Initially, all state-action pairs are random values. At each timestep,
the agent selects an action and observes the reward, rt+1 at state
st+1. As the agent explores, these state-action pairs will converge to
represent the expected reward of the states in future timesteps. At
each state transition, each QL(s,a) is updated as follows:

QL(st ,at ) ← QL(st ,at ) + α[rt+1 + γmaxa′QL(st+1,a
′) −QL(st ,at )]

Where themaxa′QL(st+1,a′) represents the maximum value from
st+1 given the target policy. We compute the subsequent state given
the state transition function, NNST .

Open Problems: Many open problems remain for the above
design. As we indicated above, the first open problem is the choice
of reward function and its impact on query plan selection. Another
open problem is that the state-space is large even when we only
consider selections and join operators as possible actions. Thus,
the Q-learning algorithm as initially described is impractical as
the state-action values are estimated separately for each unique
subquery. In other words, for each query that we train, it is unlikely
that we will run into the same exact series of states for a separate
query. Thus, a better approach is to consider approximate solutions

to find values for QL(s,a). We can learn a function, Q̂L(s,a,w) to
approximate QL(s,a) given parameter weights w . This allows the
model to generalize the value of a state-action pairs given previous
experience with different (but similar) states.
5 RELATED WORK
Eddies [2] gets rid of the optimizer altogether and instead of building
query plans, uses an eddy to determine the sequence of operators
based on a policy. Tzoumas et al. [13] took this a step further and
transformed it into a reinforcement learning problem where each
state represents a tuple along with metadata about which operators
still need to be applied and each action represents which operator
to run next. Since the eddies framework does not build traditional
query plans, their work does not consider learning representations of
intermediate relations. Leo [10], was one of the first approaches to
automatically adjust an optimizer’s estimates based on past mistakes.
This requires successive runs of similar queries to make adjustments.
Liu et al. [6] use neural networks to solve the cardinality estimation
problem, but focus on selection queries only. Work by Kraska et
al. [4] uses a mixture of neural networks to learn the distribution of
an attribute to build fast indexes. Our goal is to learn the correlation
across several columns and to build query plans. Work by Marcus
et al. [7] also uses a deep reinforcement learning technique to de-
termine join order for a fixed database. Each state also represents
a subquery, but our approach models each state as a latent vector
that is learned through a neural network and is propagated to other
subsequent states. Their approach uses a policy gradient to determine
the best action, while our technique proposes to use a value-based
iteration approach.

6 CONCLUSION
In this work, we described a model that uses deep reinforcement
learning for query optimization. By encoding basic information
about the data, we use deep neural networks to incrementally learn
state representations of subqueries. As future work, we propose to
use these state representations in conjunction with a reinforcement
learning model to learn optimal plans.
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