
DeepEverest: Accelerating Declarative Top-KQueries for Deep
Neural Network Interpretation

Technical Report

Dong He

Paul G. Allen School of Computer

Science & Engineering

University of Washington

donghe@cs.washington.edu

Maureen Daum

Paul G. Allen School of Computer

Science & Engineering

University of Washington

mdaum@cs.washington.edu

Magdalena Balazinska

Paul G. Allen School of Computer

Science & Engineering

University of Washington

magda@cs.washington.edu

ABSTRACT
We develop, implement, and evaluate DeepEverest, a system for

the efficient execution of interpretation by example queries over the
activation values of a deep neural network. DeepEverest consists

of an efficient indexing technique and a query execution algorithm

with various optimizations. Experiments with our prototype

implementation show that DeepEverest, using less than 20% of the

storage of full materialization, significantly accelerates individual

queries by up to 62× and consistently outperforms othermethods on

multi-query workloads that simulate DNN interpretation processes.

1 INTRODUCTION
Deep neural networks (DNNs) are increasingly used by machine

learning (ML) applications. When training and deploying DNNs,

interpretation and debugging are important for researchers and

data scientists to understand what their models are learning. DNN

interpretation is a relatively new field of research, and techniques

are evolving. While many new approaches are being developed,

they often do not scale with the size of the datasets and models [47].

The problem that we address in this paper is the efficient execution

of a common class of DNN interpretation queries.

The fundamental building blocks of DNN interpretation are

neurons and groups of neurons. As described in Section 2, each

neuron outputs an activation value as the input is propagated

through the network. Existing DNN interpretation techniques

often perform analysis on the activation values of neurons [6, 7,

14, 41, 61, 63]. When DNNs are trained on tasks such as image

classification or scene synthesis, there emerge individual neurons

and groups of neurons that match specific human-interpretable

concepts [7, 14, 62], such as “palaces” and “trees”.

To understand what individual neurons and groups of

neurons learn and detect, researchers often ask interpretation
by example queries [29]. These queries help with understanding

the functionality of neurons and neuron groups by tying that

functionality to the input examples in the dataset. A widely used

query is, “find the top-𝑘 inputs that produce the highest activation
values for an individual neuron or group of neurons” [3, 13, 15, 22,
34, 51, 58, 59, 62]. Another common query is, “for any input, find
the k-nearest neighbors in the dataset using the activation values of a
group of neurons based on the proximity in the latent space learned by
the DNN” [3, 10, 24, 37, 39, 44, 55]. As a concrete example, consider

a DNN trained to classify images. A user may be interested in

understanding what parts of an image of a dog caused the model to

correctly predict its class. The user may inspect the maximally

activated neurons of different layers in the network based on

the conjecture that groups of maximally activated neurons act

as semantic detectors of features in the image (e.g., floppy ears).

To investigate whether these neurons exhibit similar behavior for

other images of dogs, the user may then ask for the most similar

images to the sample image based on the activation values of a

group of neurons.

This paper presents a system called DeepEverest that focuses

on accelerating the aforementioned two kinds of queries: (1) find

top-𝑘 inputs that produce the highest activation for a user-specified

group of neurons, and (2) find the top-𝑘 most similar inputs based

on a given input’s activation values for a user-specified neuron

group. A group of neurons consists of one or more neurons within

a layer of the DNN. We call the first type of query a top-𝑘 highest
query and the second type of query a top-𝑘 most-similar query.

Executing these types of interpretation by example queries

efficiently with low storage overhead is challenging. One baseline

approach is to materialize the activation values for all inputs and all

neurons. However, this approach requires too much storage space.

For example, storing all the activation values uncompressed of a

ResNet50 network on a dataset of 10,000 images occupies 1.35 TB

of disk storage. As another example, storing all the activations

for ten epochs of a VGG16 network on a dataset of 50,000 images

requires 350 GB of compressed storage [53]. At the other extreme,

recomputing all activation values at query time imposes no storage

overhead, but is compute-intensive and extremely slow because

it requires DNN inference to compute the activation values on

the entire dataset at query time. For instance, answering a top-𝑘
most-similar query that targets a relatively late layer of ResNet50

on a dataset of 10,000 images takes more than 120 seconds, which

renders the DNN interpretation process tedious.

Further, although the target query is a 𝑘-nearest neighbor (KNN)

search, existing approaches to accelerate KNN queries are not

applicable. KNN methods rely on building efficient data structures

such as trees [8, 32, 42] or hash tables [4, 11] in advance for

faster query execution later. One could try to build a single, large,

multidimensional data structure for all neurons in each layer.

However, such an index would not perform well because of its very

large dimensionality. DNNs frequently have layers with multiple

thousands of neurons, thus dimensions. One could build data

structures for all possible neuron groups that a user could query.

However, this would either limit the user to a small set of possible

queries orwould be prohibitively expensive both in time and storage

because the number of possible neuron groups grows exponentially

ar
X

iv
:2

10
4.

02
23

4v
1

 [
cs

.D
B

]
 6

 A
pr

 2
02

1

Dong He, Maureen Daum, and Magdalena Balazinska

with the number of neurons in each layer. Additionally, in all

cases, precomputing and storing all activation values in such data

structures would add a prohibitive storage overhead.

While many systems have recently been developed to enable

various forms of DNN interpretation [3, 22, 23, 26, 45, 47, 53],

as we discuss further in Section 3, none supports flexible and

efficient interpretation by example queries. In prior work [35],

we investigated the use of sampling for model diagnosis. That

work, however, focused only on aggregate queries and the use of

approximate query processing. The closest work to DeepEverest is

MISTIQUE [53]. MISTIQUE introduced storage techniques such as

compression and quantization. Those techniques are orthogonal to

DeepEverest and could complement our approach. It is, however,

possible to use some of MISTIQUE’s techniques as a caching

algorithm, which we compare against in our experiments.

In DeepEverest, we design and implement an indexing technique

called Neural Partition Index, and an efficient query execution

algorithm, called Neural Threshold Algorithm, which has low

storage overhead, reduces the number of activation values that must

be computed at query time, and guarantees the correctness of top-𝑘

results. DeepEverest builds on the classic threshold algorithm [12],

which can support top-𝑘 queries that target arbitrary neuron groups.

The classic threshold algorithm requires full materialization of the

activation values of the dataset. Because the bottleneck of query

execution is DNN inference (not the calculation of the top-𝑘 group),

the classic threshold algorithm would not accelerate our target

queries. We argue that for any algorithm to improve query time, it

must reduce the number of inputs on which DNN inference is run at

query time. DeepEverest achieves this reduction of DNN inference

at query time while keeping the storage overhead low by building

the Neural Partition Index and using this index in the Neural

Threshold Algorithm which is a modified threshold algorithm.

Rather than store the activation values for all neurons, the Neural

Partition Index partitions the inputs and stores a small amount

of information per-partition that is useful when deciding which

activation values to recompute at query time. The Neural Threshold

Algorithm then uses insights from the classic threshold algorithm to

decide when to terminate as it incrementally recomputes activation

values using DNN inference only for small subsets of inputs as

needed to answer the query.

In addition to its fundamental approach, DeepEverest also

includes several important optimizations: (1) incremental indexing

to avoid a large computation overhead in advance of query

execution; (2) an extra Maximum Activation Index to accelerate top-
𝑘 most-similar queries that specifically target maximally activated

neurons and top-𝑘 highest queries; (3) automated configuration

tuning; (4) and inter-query acceleration, which further speeds up

sequences of related queries.

In summary, the contributions of this paper are:

• We propose, design, and implement a system called DeepEverest

that includes an efficient index structure and query execution

algorithm that accelerates interpretation by example queries for
DNN interpretation while keeping the storage overhead low

(Section 4.2, Section 4.3, Section 4.4, Section 4.5).

• We develop multiple additional optimizations for DeepEverest

that accelerate individual queries (Section 4.6.1), auto-tune

parameters (Section 4.6.2), and accelerate sequences of related

queries (Section 4.6.3).

• We implement a DeepEverest prototype and evaluate it on

benchmark datasets and models (Section 5). We demonstrate

that DeepEverest, using less than 20% of the storage of full

materialization, significantly accelerates individual interpretation
by example queries by up to 62.7× and consistently outperforms

other methods on multi-query workloads that simulate DNN

interpretation processes.

2 PROBLEM FORMULATION
Modern machine learning applications commonly utilize deep

neural networks (DNNs). A DNN consists of layers composed

of units, called neurons, connected by edges with associated

weights. Inputs to the DNN are propagated through the layers.

The output of a single neuron is a linear combination of its inputs

and their associated edge weights that is optionally transformed by

a nonlinear activation function. For example, an activation function

may output only positive values by mapping negative values to 0

[38], or scale inputs to values in the range (0, 1).
The output of each neuron for a given input is called its activation

value (or activation). DNN interpretation involves the study of

these activation values [6, 7, 14, 41, 61, 63]. Typical questions that a

researcher or scientist may ask include “For any input, which are the
most highly activated neurons in a layer?” or “What are the nearest
neighbors for an input in the dataset based on the proximity in the
latent space defined by these highly activated neurons?” These types
of queries enable researchers and scientists to reason about what

the DNN learns and identify how groups of neurons match human-

interpretable concepts (e.g., a wheel in a picture of a bicycle).

In this paper, we address the problem of enabling fast queries

over activation values in a neural network. Conceptually, a DNN

and input dataset can be described by the following two relations:

• Neuron(neuronID, layerID, . . .)

• Artifact(inputID, neuronID, activation)

DeepEverest supports two fundamental classes of queries over

activation values: top-𝑘 highest queries that find the top-𝑘 inputs

that produce the highest activation values for a user-specified group

of neurons and top-𝑘 most-similar queries that find the top-𝑘 inputs

that are most similar to a user-specified sample input based on the

activation values of a user-selected group of neurons. The rank of

an input is decided by a user-specified distance function (or the

system default function), dist. Based on the user-selected group of

neurons, for top-𝑘 highest queries, dist measures the magnitude of

the input’s activations, and it takes as input a set of activation values;

for top-𝑘 most-similar queries, dist measures the distance between

the input and the sample input, and it takes as input a set of absolute

differences between the input’s activations and the sample input’s

activations. This distance function dist must be monotonic, i.e.,

dist(𝑥1, 𝑥2, . . . , 𝑥𝑛) ≤ dist(𝑥 ′
1
, 𝑥 ′

2
, . . . , 𝑥 ′𝑛) whenever 𝑥𝑖 ≤ 𝑥 ′

𝑖
for

each 𝑖 . The monotonicity is satisfied by common distance functions,

such as 𝑙1-distance, 𝑙2-distance, cosine distance (once transformed

to normalized 𝑙2-distance), andweighted distances likeMahalanobis

distance, among others. The default dist in DeepEverest is 𝑙2-

distance.

DeepEverest: Accelerating Declarative Top-KQueries for Deep Neural Network Interpretation

3 RELATEDWORK
DNN interpretation. Many approaches have been proposed to

interpret the internals of deep neural networks [3, 6, 7, 10, 13–

15, 22, 24, 34, 39, 41, 44, 51, 55, 58, 59, 61–63]. These approaches ask

interpretation by example queries that return most similar inputs

with respect to the learned representations (activations of a group of

neurons) of a given input or inputs that maximally activate a group

of neurons. They motivate the design of DeepEverest. DeepEverest

does not invent new interpretation methods, but it instead builds

novel indexes and algorithms that accelerate the query execution

of these commonly asked queries for DNN interpretation.

System for Machine Learning. Many systems have been

proposed to support efficient machine learning such as [36,

49, 54, 57]. DeepEverest falls into the groups of systems that

support model diagnosis and interpretation [3, 9, 22, 23, 25, 28,

30, 33, 47, 53, 58]. A number of systems like ModelTracker [3],

VisTrails [9], Prospector [25], CNNVis [30], and others [22,

23, 28, 33, 58] support visual inspection of machine learning

models, workflows, and features. These systems could utilize

DeepEverest to accelerate some of the queries used to build the

visualizations. DeepBase [47] abstracts model diagnostic queries

as hypotheses verification tasks and lets users identify neurons

that have statistical dependencies with user-specified hypotheses.

However, it does not support interpretation by example queries.

MISTIQUE [53] accelerates diagnostic queries that examine the

activations of neurons by focusing on storage techniques such

as quantization while sacrificing some query accuracy to reduce

the storage overhead, which is orthogonal to DeepEverest, and

DeepEverest could incorporate these techniques to further reduce

the storage overhead. MISTIQUE also proposes a storage cost

model that captures the trade-off between materialization and

recomputation of the activations for different layers and makes

materialization decisions accordingly. These systems have not

addressed the problem of accelerating interpretation by example
queries well because they do not reduce the number of activation

values computed or loaded from disk during query execution as

DeepEverest does.

Nearest Neighbor Search. The target query in this paper is a k-

nearest neighbor (KNN) search. While there exist many methods

for exact nearest neighbors [8, 16, 32, 42] as well as for approximate

nearest neighbors [4, 11, 20, 21, 56], the challenge in this paper is

fundamentally different from the KNN search. These KNN search

methods need to know what dimensions will be queried ahead of

time and construct data structures in that space. In our problem,

the dimensions of the KNN search are defined by the neuron group

specified only at query time.

Top-K Query Processing. Top-𝑘 query processing is formalized

by the seminal work on the threshold algorithm [12]. The threshold

algorithm scans multiple sorted lists and maintains an upper bound

for the aggregate score of unseen objects. Each newly seen object

is accessed (by random access) in every other list and the aggregate

score is computed by applying the scoring function to the object’s

value in every list. The algorithm terminates after 𝑘 objects are

seen with scores greater than or equal to the upper bound. Many

follow-up approaches propose approximation, optimizations, and

extensions [2, 5, 17, 19, 43, 52, 60]. These top-𝑘 query processing

techniques assume that accesses (either sorted or random access) are

available to the underlying data sources. However, this assumption

does not hold in our problem setting. The activation values needed

for the top-𝑘 query cannot be stored on disk because the storage

overhead is too high. They also cannot be computed at query

time because of the high computation overhead. What is novel

in DeepEverest is that it avoids computing as many activation

values as possible at query time, while keeping storage overheads

low, by building the indexes we design and using those indexes in

a modified threshold algorithm during query execution.

4 DEEPEVEREST
In this section, we first consider baseline approaches, then describe

howDeepEverest improves upon those baselines to accelerate query

execution while keeping storage costs low.

4.1 Baselines
In this section, we discuss baseline approaches and explain why

applying the classic threshold algorithm (or any KNN algorithm)

would not improve the query time.

PreprocessAll. The first baseline, PreprocessAll, has a high storage

cost. It performs DNN inference on the entire dataset and stores

all the activations ahead of time. It executes queries by loading

the previously-stored activation values of the neuron group for all

inputs from disk and maintaining a top-𝑘 result set.

ReprocessAll. The second baseline, ReprocessAll, has a high

computation cost. It has no storage overhead and performs no

preprocessing. It executes queries by computing the activation

values of the layer being queried by DNN inference on all inputs

and maintaining a top-𝑘 result set as it performs the recomputation.

LRU Cache. The third baseline, LRU Cache, is a disk cache that has
a fixed storage budget with a least-recently-used (LRU) replacement

policy. This strategy strikes a balance between the storage overhead

of PreprocessAll and the computation overhead of ReprocessAll. LRU
Cache maintains a fixed-sized disk cache that stores the activation

values for queried layers. A query is executed as in PreprocessAll
if the activations of the queried layer are present in the disk

cache. Otherwise, it is executed as in ReprocessAll. After that, the
activations of the queried layer are persisted to the disk cache.

When the size of the disk cache exceeds the storage budget, the

cache evicts the activations of the least recently used layer.

Priority Cache. The final baseline, Priority Cache, is a technique
adapted from MISTIQUE [53]. Priority Cache has a fixed-sized

disk cache to store the activation values for some layers. As a

preprocessing step, it uses the storage cost model from [53] to pick

which layers to store on disk, assuming each layer will be queried

the same number of times. Under the storage budget, this storage

cost model prioritizes the layers that save the most query time per

GB of data stored. It performs DNN inference on every input and

stores the activation values for the layers selected ahead of time.

A query is executed as in PreprocessAll if the activations of the

queried layer are present in the disk cache. Otherwise, the query is

executed as in ReprocessAll.

Dong He, Maureen Daum, and Magdalena Balazinska

The classic threshold algorithm could be applied to each of these

baselines by first using the materialized or recomputed activations

to construct the Artifact table (defined in Section 2). Artifact
is then used to construct a relation in which each row represents

an input, and each column represents a neuron and contains the

absolute difference between the activation of that row’s input and

the activation of the target input on the column’s neuron. The

classic threshold algorithm can be applied after sorting the absolute

differences in ascending order, using any monotonic norm of the

absolute differences as the aggregation function.

However, applying the classic threshold algorithm (or any KNN

algorithm) on top of each of the baselines would not improve query

times. Using it along with ReprocessAll would not help because

ReprocessAll requires running DNN inference on the entire dataset

to compute Artifact at query time, which is the bottleneck of

query execution. Similarly, applying it on PreprocessAll would not

improve query times because generating the relation of absolute

differences requires a full scan over Artifact before the threshold

algorithm can be applied. However, the top-𝑘 result set could

already be computed during the full scan. Applying it on top of

LRU Cache and Priority Cache would not improve the query times

for the same reasons as PreprocessAll (for layers in the cache) and

ReprocessAll (for layers not in the cache).

4.2 Overview of DeepEverest
As described, directly applying the classic threshold algorithm does

not improve query time because Artifact must be fully computed

at query time, which requires DNN inference on all inputs. Query

execution can be significantly accelerated by avoiding running the

DNN on inputs that will not be one of the top-𝑘 results.

We design and build a novel index, which we call the Neural

Partition Index (discussed in Section 4.3), and a query execution

algorithm,whichwe call the Neural Threshold Algorithm (discussed

in Section 4.4). The Neural Threshold Algorithm is a modified

threshold algorithm. In contrast to the classic threshold algorithm, it

does not require all activation values of all inputs before it starts. It

utilizes the Neural Partition Index to progressively access the inputs

that are theoretically possible to be in the top-𝑘 results, and only

performs DNN inference on these inputs. This algorithm overcomes

the bottleneck of query execution, DNN inference, by reducing the

number of inputs on which DNN inference is performed at query

time, while guaranteeing the precision of the top-𝑘 results returned

and introducing only tolerable storage overhead.

4.3 Neural Partition Index
The activation values in a DNN can be conceptually represented

by Artifact introduced in Section 2. Conceptually, DeepEverest

builds an index on the search key (neuronID, activation)
and supports queries that return the inputIDs for a given

neuronID and range of activation values. An important goal

of DeepEverest is to avoid materializing as many activation

values as possible. For this purpose, DeepEverest builds an

index on (neuronID, partitionID) instead, where partitionID
(PID) is the identifier of a range-partition over activation values.

DeepEverest builds equi-sized partitions, and partition 0 contains

the largest activation values. The index then supports efficient

Input\
Neuron

R1 R2 R3

x0 2.0 2.0 2.0

x1 2.0 1.6 1.0

x2 1.5 1.8 1.6

x3 1.8 1.7 1.8

x4 1.2 1.2 1.1

x5 1.1 1.1 1.2

Input R1 PID

x5 1.1 2

x4 1.2 2

x2 1.5 1

x3 1.8 1

x1 2.0 0

x0 2.0 0

Input R2 PID

x5 1.1 2

x4 1.2 2

x1 1.6 1

x3 1.7 1

x2 1.8 0

x0 2.0 0

Input R3 PID

x1 1.0 2

x4 1.1 2

x5 1.2 1

x2 1.6 1

x3 1.8 0

x0 2.0 0

Input R1 PID

x5 2

x4 2

x2 1

x3 1

x1 0

x0 0

Input R2 PID

x5 2

x4 2

x1 1

x3 1

x2 0

x0 0

Input R3 PID

x1 2

x4 2

x5 1

x2 1

x3 0

x0 0

R1
PID

Lower
bound

0 2.0

1 1.5

2 1.1

R2
PID

Lower
bound

0 1.8

1 1.6

2 1.1

R3
PID

Lower
bound

0 1.8

1 1.2

2 1.0

neuParIdx
lowBnd

Sort &
Partition

Store

Figure 1: An example of building the Neural Partition Index
of three neurons, 𝑅1, 𝑅2, 𝑅3, for six inputs, 𝑥0, . . . , 𝑥5.

lookups for a given (neuronID, partitionID) combination.

Specifically, the index returns the set of inputIDs whose

activation values for the given neuronID belong to the partition

identified with partitionID. Moreover, the index also supports

queries that return the partitionID for a given (neuronID,
inputID) combination. We return to this type of query later.

We call this structure the Neural Partition Index and denote

the queries with neuParIdx(neuronID, partitionID) and

neuParIdx(neuronID, inputID). Additionally, for each partition,

DeepEverest also stores the lower bound of the activation values in

that partition and supports queries that ask for that lower bound.

We denote this querywith lowBnd(neuronID, partitionID). The
number of partitions, 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 , is a configurable parameter that

is discussed further in 4.6.2.

There are two approaches to implementing the index. The first

approach would be to maintain a set of buckets, each identified with

a unique (neuronID, partitionID) combination as the key, and,

for each bucket, maintain a list of inputIDs. The second approach,

which DeepEverest uses, is to maintain a list of (neuronID,
inputID) pairs as keys, and, for each entry, store the partitionID.
neuronID and inputID are integers, so rather than building a B-

tree or a hash index over the keys ((neuronID, partitionID)
in the first approach, and (neuronID, inputID) in the second

approach), we create an optimized index structure using an array

where the neuronID and inputID act as offsets for lookups in the

array. This enables us to only store the values and therefore avoid

the cost of storing the keys. Figure 1 illustrates the Neural Partition

Index for an example dataset with three partitions.

During pre-processing, DeepEverest runs DNN inference

on all inputs once to build the Neural Partition Index for

every neuron. The pre-processing time is reported in Section 5.

The method that DeepEverest adopts is more space-efficient

than building an index over (neuronID, partitionID)
pairs because it costs 𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ·𝑛𝐼𝑛𝑝𝑢𝑡𝑠 · log

2
(𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠)

bits rather than 𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ·𝑛𝐼𝑛𝑝𝑢𝑡𝑠 · log
2
(𝑛𝐼𝑛𝑝𝑢𝑡𝑠) bits, where

𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠<<𝑛𝐼𝑛𝑝𝑢𝑡𝑠 . The Neural Partition Index also has a

much smaller storage overhead compared to fully materializing

all activation values. A partitionID takes less storage

than an activation value because a partitionID only costs

𝑙𝑜𝑔2 (𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠) bits, while an activation value is usually a

32-bit floating point number that costs 32 bits. For example, if

DeepEverest: Accelerating Declarative Top-KQueries for Deep Neural Network Interpretation

PID\Neuron R1 R2 R3

0 0.9 0.7 0.6

1 0.4 0.5 0.0

2 0.0 0.0 0.2

c\Neuron R1 R2 R3

0 2 2 1

1 1 1 2

2 0 0 0

dPar ord

Figure 2: 𝑑𝑃𝑎𝑟 and 𝑜𝑟𝑑 for the execution of the Neural
Threshold Algorithm for the example query of finding the
most similar inputs to 𝑥5.

Neuron R1 R2 R3

toRun {x4, x5} {x4, x5} {x2, x5}

toRun (c = 0)
Neuron R1 R2 R3

toRun {x2, x3} {x1, x3} {x1, x4}

toRun (c = 1)

(a) Build 𝑡𝑜𝑅𝑢𝑛

Input newly computed x2 x4

dist 1.5 0.3

dist (c = 0) dist (c = 1)
Input newly computed x1 x3

dist 1.6 1.9

(b) Perform inference to compute 𝑑𝑖𝑠𝑡

(x, dist(x)) (x4, 0.3) (x2, 1.5) (x, dist(x)) (x4, 0.3) (x2, 1.5)

Neuron R1 R2 R3

minDist 0.1 0.1 0.0

minDist (c = 0)
Neuron R1 R2 R3

minDist 0.7 0.6 0.4

minDist (c = 1)

Neuron R1 R2 R3

(minA, maxA) (1.1, 1.2) (1.1, 1.2) (1.2, 1.6)

minBoundary, maxBoundary (c = 0)
Neuron R1 R2 R3

(minA, maxA) (1.1, 1.8) (1.1, 1.7) (1.0, 1.6)

t = 0.1 + 0.1 + 0.0 = 0.2 (c = 0) t = 0.7 + 0.6 + 0.4 = 1.7 (c = 1)

Neuron R1 R2 R3

(F, G) (∞, 1) (∞, 1) (1, 1)

F, G (c = 0)
Neuron R1 R2 R3

(F, G) (∞, 1) (∞, 1) (∞, 1)

F, G (c = 1)

minBoundary, maxBoundary (c = 1)

top (c = 0) top (c = 1)

(c) Check termination

Figure 3: Intermediate variables for the execution of the
Neural Threshold Algorithm for the example query. The
values when 𝑐=0 are shown on the left, and the values when
𝑐=1 are shown on the right.

DeepEverest has 8 partitions for each neuron, representing a

partitionID costs 3 bits, which is less than 10% of the storage

cost of full materialization. The cost of storing the lower bounds is

negligible compared to that of storing partitionIDs.

4.4 Neural Threshold Algorithm
Notation.We denote with 𝑁 the set of all neurons in the DNN and

with 𝐷 the database of all inputs. A neuron is denoted with 𝑛∈𝑁
and an input with 𝑥∈𝐷 . The user issues a query: topk(𝑠, 𝑔, 𝑘, dist),
where 𝑠∈𝐷 is the sample input, or sometimes called target input,

that the user is focusing on. 𝑔 ⊆ 𝑁 is a set of neurons from 𝑁 .

Neurons in 𝑔 are from the same layer. 𝑘 is the desired number of

results, and dist is the distance function. This function computes

the distance between the set of activation values of 𝑠 and 𝑥 looking

only at the neurons in 𝑔. Users can specify their desired distance

function or use the system default, 𝑙2-distance. Table 1 lists our

frequently used notation.

The Neural Threshold Algorithm returns the set of top-𝑘 inputs

that are closest to the sample input when considering only the

Table 1: Summary of frequently used notation.

Symbol Meaning

𝑁 Set of neurons in the DNN

𝐷 Database of all inputs

𝑥 Arbitrary input from 𝐷

𝑠 Sample input (or target input) from 𝐷

𝑔 Group of neurons from 𝑁

𝑘 Number of results to return

topk(𝑠, 𝑔, 𝑘,dist) Top-𝑘 most-similar query
dist Function to compute distances between inputs

𝑔 (𝑖) The 𝑖-th neuron in 𝑔

𝑖 The 𝑖-th neuron in 𝑔 (if clear in context)

act(𝑖, 𝑥) Activation value of 𝑔 (𝑖) for input 𝑥
𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔) Distance between 𝑠 and 𝑥 based on 𝑔

𝑡𝑜𝑝 Set of top-𝑘 inputs that are closest to the target input

𝑃 (𝑛) Partitions for a neuron 𝑛

neuParIdx Neural Partition Index

lowBnd(𝑛, 𝑝) Lower bound of a single partition 𝑝∈𝑃 (𝑛)
maxActIdx Maximum Activation Index

neurons in 𝑔. This set can be defined as set 𝑡𝑜𝑝 ⊆ 𝐷 of 𝑘 inputs.

𝑡𝑜𝑝 is initially empty and is conceptually built incrementally by

identifying and adding to 𝑡𝑜𝑝 the next input that satisfies:

arg min

𝑥 ∈𝐷\𝑡𝑜𝑝
𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔) (1)

We further denote with 𝑔(𝑖) (or 𝑖 when clear in context) the 𝑖-th

neuron in set 𝑔, and with act(𝑔(𝑖), 𝑥) (or when clear act(𝑖, 𝑥)), the
activation value of neuron 𝑔(𝑖) on input 𝑥 . For each neuron, 𝑛∈𝑁 ,

the Neural Partition Index includes the set of partitions, 𝑃 (𝑛)∈𝑃 .
We denote a single partition for neuron 𝑛 with 𝑝∈𝑃 (𝑛). We denote

the lower bound of this partition 𝑝∈𝑃 (𝑛) with lowBnd(𝑛, 𝑝). The
Neural Threshold Algorithm proceeds as follows,

Step 1: Load indexes. We assume that the Neural Partition Index

is on disk when the query arrives. The first step reads the Neural

Partition Index for neurons in the layer to which 𝑔 belongs from

disk. Only the Neural Partition Index for the neurons 𝑔(𝑖)∈𝑔 will

be used. The index holds the set of partitions, their lower bounds,

and the partitionID of each input for each 𝑔(𝑖)∈𝑔.
Step 2: Compute target activations. For each 𝑔(𝑖)∈𝑔, compute

act(𝑖, 𝑠), the activation value for input 𝑠 and neuron𝑔(𝑖) by running
DNN inference on input 𝑠 . A single inference pass is sufficient to

compute the activation values for all neurons in 𝑔.

Step 3: Order partitions. This step computes the order by which

the partitions are accessed by the algorithm for each neuron. For

each neuron 𝑔(𝑖)∈𝑔 and partition 𝑝∈𝑃 (𝑖), compute 𝑑𝑃𝑎𝑟 (𝑖, 𝑝) as,

𝑑𝑃𝑎𝑟 (𝑖, 𝑝) =
{
|lowBnd(𝑖, 𝑝) − act(𝑖, 𝑠) |, 𝑠 ∉ 𝑝

0, 𝑠 ∈ 𝑝
(2)

which is the distance between the target input’s activation value

for neuron 𝑖 and the smallest activation value in partition 𝑝 . For

each neuron 𝑖 , sort the partitions on their 𝑑𝑃𝑎𝑟 (𝑖, 𝑝) values and put
them in a list, denoted with 𝑜𝑟𝑑 (𝑖).

Example: To illustrate the first three steps, consider a query
topk(𝑥5, {𝑅1, 𝑅2, 𝑅3}, 2, 𝑙1-distance) that finds the top-2 most
similar inputs based on 𝑥5’s activations on the neurons shown in

Dong He, Maureen Daum, and Magdalena Balazinska

Figure 1. In this example, 𝑠=𝑥5, 𝑔={𝑅1, 𝑅2, 𝑅3}. Step 1 reads from disk
the Neural Partition Index, denoted with neuParIdx and lowBnd in the
figure. Step 2 runs inference to compute the activation values for 𝑥5
(i.e., (act(𝑅1, 𝑥5), act(𝑅2, 𝑥5), act(𝑅3, 𝑥5))=(1.1, 1.1, 1.2)). In step
3, for each 𝑖∈ {𝑅1, 𝑅2, 𝑅3}, 𝑜𝑟𝑑 (𝑖) is computed as shown in Figure 2.

Step 4: Find top-k. This step runs the modified threshold

algorithm. It starts with the partitions to which the target

input belongs, and it expands its search from there. Unlike the

classic threshold algorithm, this step incrementally computes the

activation values for candidate inputs and does so in batches to get

good GPU performance. This step proceeds as follows:

Starting with an index 𝑐 = 0,

Step 4 (a): For each neuron𝑔(𝑖), maintain a set 𝑡𝑜𝑅𝑢𝑛𝑖 that contains

the inputs whose activation values should be computed. Access

𝑜𝑟𝑑 (𝑖, 𝑐) to get the partition that contains the next most similar

inputs. Query the Neural Partition Index to get the inputIDs
that belong to this partition 𝑜𝑟𝑑 (𝑖, 𝑐) and add them to 𝑡𝑜𝑅𝑢𝑛𝑖 , i.e.,

𝑡𝑜𝑅𝑢𝑛𝑖←neuParIdx(𝑖, 𝑜𝑟𝑑 (𝑖, 𝑐)).
In the example, when 𝑐=0, 𝑡𝑜𝑅𝑢𝑛𝑅1,0= {𝑥4, 𝑥5} because

𝑜𝑟𝑑 (𝑅1, 0)=2, as shown in Figure 3a

Step 4 (b): For each neuron 𝑖 , compute the activation values for the

inputs in 𝑡𝑜𝑅𝑢𝑛𝑖 (excluding those that have already been computed)

by running DNN inference in batches. 𝑡𝑜𝑅𝑢𝑛𝑖 is cleared after DNN

inference. Note that this inference step computes the activation

values for all neurons in the neuron group being queried. Compute

the distance between each newly computed input 𝑥 and the sample

input 𝑠 as 𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔) = dist(|act(0, 𝑥) − act(0, 𝑠) |, . . . , |act(|𝑔| −
1, 𝑥) − act(|𝑔| − 1, 𝑠) |). Update 𝑡𝑜𝑝 if 𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔) is one of the 𝑘-
lowest the algorithm has seen so far, i.e., input 𝑥 is one of the 𝑘-most

similar seen so far. Ties are broken arbitrarily.

In the example shown in Figure 3b, when 𝑐=0, the activation values
of inputs 𝑥2, 𝑥4 are computed (𝑥5 was computed in Step 1). The
distances from 𝑥2 and 𝑥4 to 𝑥5 are 1.5 and 0.3, respectively.

Step 4 (c): Maintain a range of seen activation values for inputs

from 𝑡𝑜𝑅𝑢𝑛𝑖 for each neuron 𝑖 , which is the range of activation

values such that the algorithm has seen every input with an

activation value in the open interval of this range. Note that

it is possible that the algorithm has seen one or more inputs

from other neurons’ 𝑡𝑜𝑅𝑢𝑛 sets with activation values outside

of this range. However, the open interval of this range denoted

by (𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 ,𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖) only contains the values for

which we are guaranteed to have seen every input.

Let 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑖 be the shorter distance from the boundaries of

this range to the sample input for each neuron 𝑖: 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑖 =

min {𝐹𝑖 ·|𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖−act(𝑖, 𝑠) |,𝐺𝑖 ·|𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖−act(𝑖, 𝑠) |},
where 𝐹𝑖 is an indicator function that indicates whether the

algorithm has seen the last partition (inputs with lowest activations)

of neuron 𝑖 , and 𝐺𝑖 is another indicator function that indicates

whether the 0-th partition (inputs with highest activations) of

neuron 𝑖 has been seen. Specifically, 𝐹𝑖=∞ when the last partition

of neuron 𝑖 has been seen; 𝐹𝑖=1 otherwise. 𝐺𝑖=∞ when the first

partition of neuron 𝑖 has been seen; 𝐺𝑖=1 otherwise. Define the

threshold to be,

𝑡 = dist(𝑚𝑖𝑛𝐷𝑖𝑠𝑡0,𝑚𝑖𝑛𝐷𝑖𝑠𝑡1, . . . ,𝑚𝑖𝑛𝐷𝑖𝑠𝑡 |𝑔 |−1) (3)

The threshold, 𝑡 , represents the smallest possible distance to 𝑠 from

any unseen input. The termination condition is,

max

(𝑥,𝑑𝑖𝑠𝑡 (𝑠,𝑥,𝑔)) ∈𝑡𝑜𝑝
{𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔)} ≤ 𝑡 (4)

The left-hand side of this inequality represents the maximum

distance to 𝑠 in the current top-𝑘 result set. As soon as this inequality

holds, halt and return 𝑡𝑜𝑝 as the query results.

In the example, as shown in Figure 3c, 𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 ,
𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 and 𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑖 are maintained and calculated
for {𝑅1, 𝑅2, 𝑅3}. For example, when 𝑐=0, 𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑅1=1.1,
𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑅1=1.2. Since the algorithm has seen the last partition
(2) and has not seen the first partition (0), 𝐹𝑅1=∞,𝐺𝑅1=1. Therefore,
𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑅1=|𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑅1−𝑎𝑐𝑡𝑅1,𝑥5 |=|1.2−1.1|=0.1.

When 𝑐 = 0, 𝑡 = 0.2 < 1.5 = max(𝑥,𝑑𝑖𝑠𝑡 (𝑠,𝑥,𝑔)) ∈𝑡𝑜𝑝 {𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔)},
so the algorithm does not halt. When 𝑐 = 1, 𝑡 = 1.7 ≥ 1.5 =

max(𝑥,𝑑𝑖𝑠𝑡 (𝑠,𝑥,𝑔)) ∈𝑡𝑜𝑝 {𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔)}, so the algorithm halts, and
returns 𝑡𝑜𝑝 as the query results. It is worth noting that the cost of
DNN inference on 𝑥0 is saved because its activations are not needed.

Step 4 (d): Increment 𝑐 by 1. Repeat Step 4 (a) - (d) until all partitions

have been seen or the halting condition is satisfied in Step 4 (c).

The pseudocode is shown in Algorithm 1.

The key innovation of the Neural Threshold Algorithm compared

to the classic threshold algorithm is in its processing of the inputs

partition-by-partition using the pre-constructed Neural Partition

Index until the termination condition is met. The Neural Threshold

Algorithm runs DNN inference on only the necessary partitions of

inputs for it to be certain that it has the precise top-𝑘 results when

it terminates. This approach significantly reduces the number of

inputs that DNN inference is performed on at query time compared

to computing the activation values for all inputs at query time. The

algorithm also has a much smaller storage overhead compared

to fully materializing the activation values for all inputs. It is

guaranteed to return the precise top-𝑘 results, and the correctness

and instance optimality can be proved following the same sketch

in Fagin’s paper[12]. The algorithm further improves performance

by utilizing batch processing on GPUs [40]. All inputs that share a

partition are sent to the DNN for inference at once.

4.5 Incremental Indexing
As we show in the evaluation, the DeepEverest approach described

so far achieves excellent query execution times with only a small

storage overhead. The approach, however, incurs a potentially high

preprocessing cost, especially for large datasets and large models.

Before executing any query, DeepEverest needs to compute the

activation values for all neurons and all inputs by running DNN

inference. It then needs to construct the indexes for all layers and

persist those indexes to disk.

To address this challenge, we propose to build the indexes

incrementally as queries execute. With this approach, DeepEverest

performs no preprocessing ahead of time. When the user submits a

query, if the Neural Partition Index and Maximum Activation Index

of the queried layer are available on disk, DeepEverest proceeds as

described in Section 4.4 and Section 4.6.1. Otherwise, DeepEverest

computes the activation values of the queried layer by running

DNN inference on all inputs. While doing so, it computes the query

answer and returns it to the user. DeepEverest then constructs the

DeepEverest: Accelerating Declarative Top-KQueries for Deep Neural Network Interpretation

Algorithm 1 The Neural Threshold Algorithm for top-k most-similar queries.

function answerQuery(𝑚𝑜𝑑𝑒𝑙, 𝐷, 𝑠, 𝑔, 𝑘, dist) ⊲𝑚𝑜𝑑𝑒𝑙 : the DNN, 𝐷 : dataset, 𝑠: sample image, 𝑔: neuron group, 𝑘 : number of results to

return, dist: function to compute distances between inputs

𝑙𝑎𝑦𝑒𝑟 ← getLayer(𝑔)
neuParIdx, lowBnd← loadIndex(𝑙𝑎𝑦𝑒𝑟) ⊲ Load indexes

for all 𝑔(𝑖) ∈ 𝑔 do ⊲ 𝑃 (𝑖) contains the partitions for neuron 𝑔(𝑖)
𝑃 (𝑖) ← getPartitions(neuParIdx, 𝑔(𝑖))

𝑠𝑎𝑚𝑝𝑙𝑒𝐴𝑐𝑡 ← modelInference(𝑚𝑜𝑑𝑒𝑙, 𝑙𝑎𝑦𝑒𝑟, 𝑠) ⊲ Compute the activations for 𝑠 by DNN inference

Initialize act to an empty map that contains the activations of the neuron group for accessed inputs

for all 𝑔(𝑖) ∈ 𝑔 do
act(𝑖, 𝑠) ← 𝑠𝑎𝑚𝑝𝑙𝑒𝐴𝑐𝑡 (𝑖)

for all 𝑔(𝑖) ∈ 𝑔 do
Initialize the list 𝑑𝑃𝑎𝑟 (𝑖)
for all 𝑝 ∈ 𝑃 (𝑖) do ⊲ 𝑑𝑃𝑎𝑟 (𝑖, 𝑝): the distance from each partition 𝑝 for neuron 𝑔(𝑖) to 𝑠

if 𝑠 ∈ 𝑝 then 𝑑𝑃𝑎𝑟 (𝑖, 𝑝) ← 0

else 𝑑𝑃𝑎𝑟 (𝑖, 𝑝) ← |lowBnd(𝑖, 𝑝) − act(𝑖, 𝑠) |
for all 𝑔(𝑖) ∈ 𝑔 do ⊲ 𝑜𝑟𝑑 (𝑖): the order by which the partitions for neuron 𝑔(𝑖) are accessed

𝑜𝑟𝑑 (𝑖) ← argsort(𝑑𝑃𝑎𝑟 (𝑖))
for all 𝑔(𝑖) ∈ 𝑔 do ⊲ Initialization of some variables

𝐹𝑖 ← 1, 𝐺𝑖 ← 1

𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 ←∞,𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 ← −∞
𝑐 ← 0, 𝑡𝑜𝑝 ← ∅ ⊲ Starting with 𝑐 = 0; 𝑡𝑜𝑝: current top-𝑘 result set

𝑖𝑛𝑝𝑢𝑡𝑅𝑢𝑛 ← {𝑠} ⊲ 𝑖𝑛𝑝𝑢𝑡𝑅𝑢𝑛: set of inputs that have been run for DNN inference

while True do
for all 𝑔(𝑖) ∈ 𝑔 do

if 𝑜𝑟𝑑 (𝑖, 𝑐) does not exist then return 𝑡𝑜𝑝 ⊲ Return if all partitions have been seen

𝑡𝑜𝑅𝑢𝑛𝑖 ← neuParIdx(𝑖, 𝑜𝑟𝑑 (𝑖, 𝑐))
if 𝑒𝑥𝑖𝑡𝐹𝑙𝑎𝑔 then break
𝑡𝑜𝑅𝑢𝑛𝑈𝑛𝑖𝑜𝑛 ← ⋃

𝑔 (𝑖) ∈𝑔 𝑡𝑜𝑅𝑢𝑛𝑖 \ 𝑖𝑛𝑝𝑢𝑡𝑅𝑢𝑛
𝑡𝑜𝑅𝑢𝑛𝐴𝑐𝑡 ← modelInference(𝑚𝑜𝑑𝑒𝑙, 𝑙𝑎𝑦𝑒𝑟, 𝑡𝑜𝑅𝑢𝑛𝑈𝑛𝑖𝑜𝑛) ⊲ Run DNN inference in batches

for all 𝑥 ∈ 𝑡𝑜𝑅𝑢𝑛𝑈𝑛𝑖𝑜𝑛 do
Initialize the list 𝑑𝑖 𝑓 𝑓

for all 𝑔(𝑖) ∈ 𝑔 do
act(𝑖, 𝑥) ← 𝑡𝑜𝑅𝑢𝑛𝐴𝑐𝑡𝑖,𝑥
𝑑𝑖 𝑓 𝑓𝑖 ← |act(𝑖, 𝑥) − act(𝑖, 𝑠) |

𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔) ← dist(𝑑𝑖 𝑓 𝑓) ⊲ Compute the distance between 𝑥 and 𝑠

if |𝑡𝑜𝑝 | < 𝑘 or 𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔) < getMaxDist(𝑡𝑜𝑝) then
update(𝑡𝑜𝑝, 𝑥, 𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔)) ⊲ Update 𝑡𝑜𝑝 if 𝑥 is one of the 𝑘-most similar seen

for all 𝑔(𝑖) ∈ 𝑔 do
for all 𝑥 ∈ 𝑡𝑜𝑅𝑢𝑛𝑖 do

𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 ← min(𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 , act(𝑖, 𝑥))
𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 ← max(𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 , act(𝑖, 𝑥))

if 𝑜𝑟𝑑 (𝑖, 𝑐 + 1) does not exist then 𝐹𝑖 ←∞
if 𝑜𝑟𝑑 (𝑖, 𝑐) == 0 then 𝐺𝑖 ←∞
𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑖 ← min(𝐹𝑖 · |𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 − act(𝑖, 𝑠) |,𝐺𝑖 · |𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖 − act(𝑖, 𝑠) |)

𝑡 ← dist(𝑚𝑖𝑛𝐷𝑖𝑠𝑡) ⊲ Calculate the threshold 𝑡

if |𝑡𝑜𝑝 | == 𝑘 and getMaxDist(𝑡𝑜𝑝) ≤ 𝑡 then break ⊲ Termination condition

𝑖𝑛𝑝𝑢𝑡𝑅𝑢𝑛 ← 𝑖𝑛𝑝𝑢𝑡𝑅𝑢𝑛 ∪ 𝑡𝑜𝑅𝑢𝑛𝑈𝑛𝑖𝑜𝑛

𝑐 ← 𝑐 + 1
return 𝑡𝑜𝑝

indexes for the layer and persists them to disk. With this approach, the preprocessing overhead for each layer is incurred once the first

time that layer is queried, and only if that layer is queried.

Dong He, Maureen Daum, and Magdalena Balazinska

Input\Neuron R1 R2 R3

x0 2.0 2.0 1.1

x1 2.0 1.8 1.1

x2 1.5 1.7 1.6

x3 1.8 1.6 1.8

x4 1.2 1.2 1.5

Input R1 PID

x0 2.0 0

x1 2.0 0

x3 1.8 0

Input R2 PID

x0 2.0 0

x1 1.8 0

x2 1.7 0

Input R3 PID

x3 1.8 0

x2 1.6 0

x4 1.5 0

Input newly computed x1

dist 0.2

(x, dist(x)) (x1, 0.2)
top

Neuron R1 R2

minDist 0.0 0.2

minDist
Neuron R1 R2

(min, max) (2.0, 2.0) (1.8, 2.0)

minBoundary, maxBoundary

Threshold: t = 0.0 + 0.2 = 0.2
Neuron R1 R2

H ∞ ∞

H

dist

maxActIdxArtifact
Sort &
Partition

Terminate: return (x1, 0.2)

R1 x1 x3 R2 x1 x2
𝑙 based on distance to x0

𝑡𝑜𝑅𝑢𝑛 = {x1}

Figure 4: An example of constructing maxActIdx (𝑟𝑎𝑡𝑖𝑜=0.6)
and query execution for topk(𝑥0, {𝑅1, 𝑅2, 𝑅3}, 1, 𝑙1-distance)
(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒=1). Despite 𝑥0 only being in maxActIdx for 𝑅1 and
𝑅2, DeepEverest leverages maxActIdx to answer the query
after only running DNN inference on 𝑥0 and 𝑥1.

In Section 5, we show that DeepEverest with this incremental

approach significantly outperforms other methods. While

DeepEverest must do extra preprocessing to compute and store its

indexes compared with caching the activation values directly, it

accelerates significantly more queries because it is able to store the

indexes for significantly more layers given a storage budget.

4.6 Optimizations
In this section, we present several important optimizations that

further improve the performance of our approach. The first

optimization, described in Section 4.6.1, accelerates two common

types of top-𝑘 queries. The second optimization, described in

Section 4.6.2, automatically tunes DeepEverest’s parameters. Finally,

the third optimization, described in Section 4.6.3, accelerates

sequences of related queries, as may occur during data exploration.

4.6.1 Maximum Activation Index. For a given sample input and a

layer in a DNN, the maximally activated neurons are those neurons
in the layer for which the activation values for the sample input

are the highest. DNN interpretation often involves examining such

maximally activated neurons [6, 50, 59, 62] because they respond to

the input the most and have the greatest impact on the DNN output.

A common set of top-𝑘 most-similar queries ask to find the top-𝑘

similar inputs to a sample based on a neuron group consisting of

these maximally activated neurons.

To accelerate these top-𝑘 most-similar queries that target

maximally activated neurons as well as top-𝑘 highest queries, we
introduce a straightforward yet effective optimization. The key

idea is for DeepEverest to store, for each neuron, a small fraction

of the highest activation values together with the corresponding

inputIDs. We call this data structure the Maximum Activation

Index, and denote it with maxActIdx(neuronID). This small

fraction of the highest activations automatically becomes each

neuron’s 0-th partition. We denote the fraction of inputs with

the highest activations stored in this index with 𝑟𝑎𝑡𝑖𝑜 , which is

a configurable parameter discussed in Section 4.6.2.

DeepEverest utilizes maxActIdx during query processing to

further reduce the number of inputs on which inference is

performed, if possible. DeepEverest now has more detailed

knowledge of which inputs are most similar to the target input,

rather than just the high-level knowledge that the inputs are in the

same partition. We observe empirically that the activation values of

the maximally activated neurons for an input are often likely to be

in the top activations stored in maxActIdx, and thus maxActIdx is

effective in improving the query time. DeepEverest modifies query

processing described in Section 4.4 of partition 0 to incorporate

this information as follows: DeepEverest first finds the neurons for

which the sample input is in the Maximum Activation Index (and

therefore in the 0-th partition). For these neurons, DeepEverest sorts

the other inputs in the 0-th partition by their distance to 𝑠 . Rather

than performing DNN inference on all inputs in each partition 0 for

each neuron, DeepEverest builds a global 𝑡𝑜𝑅𝑢𝑛 set by adding the

most similar inputs from all of these neurons until the batch size is

reached. Step 4(c) in Section 4.4 is modified to compute𝑚𝑖𝑛𝐷𝑖𝑠𝑡𝑖 as

min

{
|𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖−𝑎𝑐𝑡𝑖,𝑠 |, 𝐻𝑖 · |𝑚𝑎𝑥𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑖−𝑎𝑐𝑡𝑖,𝑠 |

}
, where

𝐻𝑖 is an indicator function that indicates whether the algorithm

has seen the input with the highest activation in maxActIdx(i).
Specifically, 𝐻𝑖=∞ when highest activation of neuron 𝑖 has been

seen; 𝐻𝑖=1 otherwise. The neurons 𝑖 for which 𝑠 is not in

maxActIdx(i) contribute 0 to the threshold calculation. Figure 4

illustrates an example of how maxActIdx is constructed and how

the query execution proceeds using maxActIdx.

4.6.2 Configuration Selection. Given a storage budget,

DeepEverest must decide how to allocate it between the

Neural Partition Index and the Maximum Activation Index. A

larger 𝑟𝑎𝑡𝑖𝑜 enables more queries to benefit from the Maximum

Activation Index, while more partitions enables DeepEverest

to avoid running DNN inference on more inputs that do not

contribute to the query results.

DeepEverest uses a heuristic algorithm to select good

𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑟𝑎𝑡𝑖𝑜 given a storage budget. We first pick a value

for 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 , which is key to good performance on queries that

target any kind of neuron group (see Section 5.1). Then, we set

the value of 𝑟𝑎𝑡𝑖𝑜 using the remaining storage budget to further

accelerate the two types of queries mentioned in Section 4.6.1.

Intuitively when partitions are smaller, fewer unnecessary

inputs are reprocessed to compute their activation values because

DeepEverest processes inputs partition-by-partition. However, if

the partitions are too small, DeepEverest will not leverage the full

GPU parallelization because the partition size will be smaller than

the optimal batch size. Furthermore, 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 should be a power

of two so that all the binary bits of a partitionID are fully utilized.
Given a storage budget, 𝑏𝑢𝑑𝑔𝑒𝑡 (in bytes), and a

batch size, 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 , DeepEverest sets the value of

𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 to be the maximum power of two that satisfies

𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠≤𝑛𝐼𝑛𝑝𝑢𝑡𝑠/𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 and 𝑐𝑜𝑠𝑡 (𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠)<𝑏𝑢𝑑𝑔𝑒𝑡 .
𝑐𝑜𝑠𝑡 (𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠) is the bytes consumed by storing the Neural

Partition Index with 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 and can be calculated as

𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ·𝑛𝐼𝑛𝑝𝑢𝑡𝑠 · log
2
(𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠)/8. 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 is set to the

value that achieves the highest throughput for the DNN. 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒

can also be set by the user to indicate the preferred level of

parallelization of DNN inference.

Given the remaining storage budget, 𝑏𝑢𝑑𝑔𝑒𝑡−𝑐𝑜𝑠𝑡 (𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠),
DeepEverest then sets 𝑟𝑎𝑡𝑖𝑜 to be the maximum value that

satisfies 𝑐𝑜𝑠𝑡 (𝑟𝑎𝑡𝑖𝑜)≤𝑏𝑢𝑑𝑔𝑒𝑡−𝑐𝑜𝑠𝑡 (𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠). 𝑐𝑜𝑠𝑡 (𝑟𝑎𝑡𝑖𝑜) is the
bytes consumed by storing the Maximum Activation Index

DeepEverest: Accelerating Declarative Top-KQueries for Deep Neural Network Interpretation

and can be calculated as 𝑟𝑎𝑡𝑖𝑜 ·𝑛𝐼𝑛𝑝𝑢𝑡𝑠 ·𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ·4·2, where

𝑛𝐼𝑛𝑝𝑢𝑡𝑠 ·𝑛𝑁𝑒𝑢𝑟𝑜𝑛𝑠 ·4·2 is the bytes of storing all (activation,
inputID) pairs since activation and inputID are 4 bytes each.

In cases where there is no remaining storage budget after selecting

𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 , DeepEverest sets 𝑟𝑎𝑡𝑖𝑜 to 0.

4.6.3 Inter-Query Acceleration. Inter-query acceleration is an

optimization technique to accelerate sequences of related queries, as

may occur during DNN interpretation. As an example, imagine that

a user finds a misclassified image. The user may want to first see the

maximally activated neurons in a layer for the image and then find

images with similar maximally activated neurons. The user may

then decide to change how many neurons they are looking at, e.g.,

go from the top-3 neurons to the top-4 neurons. These exploratory

queries can be related in different ways. In addition to queries that

overlap in neurons, the user-specified sample input in a query could

also be one of the top-𝑘 results for recent queries. Such queries

present an opportunity for further optimization as activation values

can be reused for related queries.

For inter-query acceleration, DeepEverest leverages an in-

memory cache that contains recently used activation values to

reduce the number of inputs that it must run DNN inference on.

Note that this in-memory cache is different from the disk caches

described in Section 4.1. During query execution, DeepEverest

inserts the activation values of each input processed by the Neural

Threshold Algorithm into the cache. Instead of caching only the

activation values for the neuron group being queried, it caches

the activations for all neurons in the queried layer. This enables

DeepEverest to utilize the cache for future related queries that target

a different set of neurons in the same layer. DeepEverest utilizes a

most recently used (MRU) replacement policy for the in-memory

cache. This is because DeepEverest processes partitions in order

from most similar to the target input to least similar, and we seek to

prioritize keeping the activations from the most similar partitions

in the cache. We show in Section 5.6 that given a small in-memory

cache budget, DeepEverest with inter-query acceleration achieves

up to 5.02× faster query times than DeepEverest without it.

5 EVALUATION
We implement DeepEverest in Python, using C++ to construct the

Neural Partition Index and the Maximum Activation Index. We

evaluate DeepEverest against the baselines described in Section 4.1.

5.1 Evaluation Setup
Datasets and models. We evaluate DeepEverest on two well-

known datasets and models. The first, called CIFAR10-VGG16, uses
as inputs 10,000 images with resolution 32×32×3 from the test set of

CIFAR10 [27], and uses as a DNN a VGG16model [31, 48] trained on

the training set of CIFAR10. The second, called ImageNet-ResNet50,
uses as inputs 10,000 images with average resolution 469×387×3
from the validation set of ImageNet [46], and uses as a DNN a

ResNet50 model [18] trained on the training set of ImageNet. These

two sets of models and datasets complement each other in terms of

model and input size and DNN inference cost. In all experiments,

we pre-load the entire input dataset into memory because its size is

orders of magnitude smaller than the size of activations or indexes.

The loading times for the activations and indexes do not include

the loading time for the input dataset. We set 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 for each

model as the value that achieves the highest inference throughput

(128 for CIFAR10-VGG16; 64 for ImageNet-ResNet50).

Query generation. To generate queries, we consider 3 types of

layers: early, mid, and late. For CIFAR10-VGG16, these correspond
to layers activation_2, activation_7, and activation_13, respectively.

For ImageNet-ResNet50, we use layers activation_2, activation_25,
and activation_48. Given an input and a layer, we consider the

following types of neuron groups: (a) Top: the maximally activated

neurons for the given input in a layer; and (b) RandomHigh: neurons
randomly picked from the top half of non-zero neurons for the

given input in a layer. We further consider small, medium, and

large neuron groups consisting of 1, 3, and 10 neurons, respectively.

Finally, based on the neuron groups, we use the following query

types: (a) FiringMax: Find the top-𝑘 inputs that maximally activate

a given neuron group (top-𝑘 highest query); (b) SimilarTop: Find the
top-𝑘 most similar inputs based on a given input’s activations of a

Top neuron group; and (c) SimilarHigh: Find the top-𝑘 most similar

inputs based on a given input’s activations of a RandomHigh neuron
group. We randomly select inputs from each dataset to generate

SimilarTop and SimilarHigh queries. SimilarTop and SimilarHigh
both belong to top-𝑘 most-similar queries mentioned in Section 1.

In all experiments, we set 𝑘=20, which is a reasonable number

of results for a user to inspect after a query. With a smaller 𝑘 ,

we expect DeepEverest to achieve larger speedups because it will

process fewer inputs and therefore return the results faster, while

the query times of baselines will remain similar since they still need

to recompute or load all the activations and maintain the query

results. With a larger 𝑘 , the overall speedups could degrade, but

DeepEverest can incrementally return the top-𝑘 query results, as

discussed in Section 6. Therefore, the perceived query time is still

significantly improved.

We use 𝑙2-distance as the distance function. Unless otherwise

stated, all numbers reported (e.g., query times) are median values

of five queries on random inputs for each query configuration (e.g.,

query type: FiringMax, neuron group size: 3, layer: late).

Machine configuration. All experiments are run on an AWS EC2

p2.xlarge instance, which has an Intel Xeon E5-2686 v4 CPU running

at 2.3 GHz, with 61 GB of RAM, and an NVIDIA K80 GPUwith 12GB

of GPUmemory. P2 instances are designed for general-purpose GPU

applications and ideally suited for machine learning [1], which is

neither too cheap nor too expensive. GPU is enabled when running

DNNs. AWS EBS gp3 volumes are used for disk storage.

5.2 Fundamental Space-Time Tradeoff
We first evaluate the fundamental trade-off that DeepEverest

achieves in terms of storage space and query execution time for

individual queries. In this experiment, we first precompute and

store the indexes for all layers before executing the benchmark

queries. For these experiments, the only optimization DeepEverest

uses is the Maximum Activation Index described in Section 4.6.1.

DeepEverest has a storage budget of 20% of PreprocessAll, and
selects 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑟𝑎𝑡𝑖𝑜 using the algorithm described in

Section 4.6.2 (for CIFAR10-VGG16, 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 64, 𝑟𝑎𝑡𝑖𝑜 = 0.0047;

for ImageNet-ResNet50, 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 64, 𝑟𝑎𝑡𝑖𝑜 = 0.0076). We

compare DeepEverest against materializing all activation values

Dong He, Maureen Daum, and Magdalena Balazinska

(a) FiringMax (b) SimilarTop (c) SimilarHigh

Figure 5: End-to-end query times (per query) and storage sizes on CIFAR10-VGG16. 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑟𝑎𝑡𝑖𝑜 of DeepEverest are
selected by our heurstic algorithm given a storage budget of 20% of full materialization.

(a) FiringMax (b) SimilarTop (c) SimilarHigh

Figure 6: End-to-end query times (per query) and storage sizes on ImageNet-ResNet50. 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑟𝑎𝑡𝑖𝑜 of DeepEverest are
selected by our heurstic algorithm given a storage budget of 20% of full materialization.

to disk (i.e., PreprocessAll) or computing them at query time (i.e.,

ReprocessAll). Figure 5 and Figure 6 show the results.

As the figures show, PreprocessAll has the highest storage cost
(37.8 GB for CIFAR10-VGG16, and 1.35 TB for ImageNet-ResNet50)
since it stores all activations for every input. However, scanning the

precomputed activation values generally leads to the fastest query

times. The query times of PreprocessAll are slower for the early

layer of CIFAR10-VGG16 because it has a large number of neurons,

and thus it takes longer to load all the activations. ReprocessAll
has the lowest storage cost since it does not precompute or store

anything ahead of time. Its query times are slow because of the

DNN inference on the entire dataset at query time.

DeepEverest achieves the best of both worlds: low storage

overhead and fast query times. For CIFAR10-VGG16, compared with

ReprocessAll DeepEverest is 1.65× to 30.9× faster for FiringMax,
1.26× to 50.6× faster for SimilarTop, and up to 51.7× faster for

SimilarHigh. For ImageNet-ResNet50, compared with ReprocessAll,
DeepEverest is 2.66× to 62.7× faster for FiringMax, 1.55× to 61.3×
faster for SimilarTop, and 1.30× to 61.1× faster for SimilarHigh.

Compared to PreprocessAll on both CIFAR10-VGG16 and

ImageNet-ResNet50, DeepEverest achieves comparable and

sometimes even faster query times for queries that target small

and medium-size neuron groups despite using only 20% of

PreprocessAll’s storage overhead. For queries that target large

neuron groups, DeepEverest’s query times are slower. We observe

this phenomenon again in Figure 10 (discussed in Section 5.4).

Due to the curse of dimensionality, there is little difference in the

distances between different pairs of inputs. As a result, DeepEverest

is not able to reduce the number of inputs run by the DNN at query

time as it does for small and medium neuron groups. Table 2 shows

the number of inputs run by the DNN at query time to compute

the activation values for SimilarHigh queries. We find that the

number of inputs run by the DNN at query time for queries on

larger neuron groups is higher than that of queries on smaller

neuron groups.

5.3 Multi-Query Workloads
In this section, we evaluate DeepEverest on multi-query workloads

using incremental indexing (see Section 4.5) to avoid start-

up overheads. We compare DeepEverest against other on-disk

caching techniques. We construct various query workloads to

represent possible DNN interpretation patterns. All workloads

consist of 1,000 SimilarHigh queries that target neuron groups

of medium size, which are the most general query type. The

DeepEverest: Accelerating Declarative Top-KQueries for Deep Neural Network Interpretation

(a) Workload 1, CIFAR10-VGG16 (b) Workload 2, CIFAR10-VGG16 (c) Workload 3, CIFAR10-VGG16

(d) Workload 1, ImageNet-ResNet50 (e) Workload 2, ImageNet-ResNet50 (f) Workload 3, ImageNet-ResNet50

Figure 7: Cumulative total time for various multi-query workloads.

first query of each workload targets a RandomHigh neuron

group from a randomly selected layer. Each later query has

probabilities 𝑝𝑠𝑎𝑚𝑒 of querying the same layer as the previous

query, 𝑝𝑝𝑟𝑒𝑣 to query a previously queried layer, and 𝑝𝑛𝑒𝑤 to

query a layer that has not been queried yet. Workload 1 sets

these to 𝑝𝑠𝑎𝑚𝑒=0.5, 𝑝𝑝𝑟𝑒𝑣=0.3, 𝑝𝑛𝑒𝑤=0.2. Workload 2 sets these to

𝑝𝑠𝑎𝑚𝑒=0.5, 𝑝𝑝𝑟𝑒𝑣=0.4, 𝑝𝑛𝑒𝑤=0.1. Workloads 1 and 2 are intended to

simulate the exploration process of users that are likely to initially

target layers they are interested in, and gradually explore more

layers. Additionally, we construct Workload 3 in which queries

are independent of each other; each layer is targeted uniformly at

random by each query. This is not a realistic interpretation pattern

but is meant to show the worst-case workload for DeepEverest.

We measure the cumulative total time, which includes both

preprocessing and query execution, and cumulative storage for

each method. DeepEverest is given a storage budget of 20% of

full materialization, and 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 and 𝑟𝑎𝑡𝑖𝑜 are selected by our

heuristic algorithm. LRU Cache and Priority Cache have the same

20% storage budget. The results for cumulative total time are shown

in Figure 7. The time to initially compute and store the data on disk

is included with the 0-th query for PreprocessAll and Priority Cache.
We report the storage results in the text.

DeepEverest consistently performs the best for Workloads 1

and 2 using less than 20% of the storage of full materialization.

We observe that after some number of queries, the cumulative

total time of DeepEverest grows more slowly. For example, in the

results for CIFAR10-VGG16 shown in Figure 7a and Figure 7b, it

plateaus after around 300 queries for Workload 1 and around 550

queries for Workload 2. This indicates that DeepEverest has built

and stored the Neural Partition Index and Maximum Activation

Index for all layers in the DNN model. All later queries are much

faster because they benefit from these indexes and DeepEverest’s

Neural Threshold Algorithm. For ImageNet-ResNet50, DeepEverest
completes building and storing indexes for all layers after around

780 queries for Workload 1 and never completes for Workload 2

as we observe that the storage of DeepEverest is only 11% of full

materialization after 1,000 queries. DeepEverest finishes building

its indexes after fewer queries in Workload 1 than in Workload 2

since Workload 1 has a higher probability of querying new layers.

While DeepEverest has the fastest query times, its storage

also grows more slowly than the baseline approaches (except

for ReprocessAll which does not have any storage overhead). For

both datasets and models, PreprocessAll uses full storage after

its preprocessing step. Similarly, Priority Cache consumes its

20% storage budget after preprocessing. LRU Cache consumes

its storage budget after around 50 to 200 queries. As discussed

above, DeepEverest finishes building the indexes for all layers and

consumes its storage budget after around 300 to 500 queries on

CIFAR10-VGG16, and for ImageNet-ResNet50 it fills its storage after
780 queries for Workload 1 and never does so for Workload 2.

ForWorkload 3, which is an unlikely DNN interpretation pattern,

the cumulative total time for DeepEverest is slightly worse than

the best performing method for the first 200 to 300 queries on both

datasets and models because during that time DeepEverest builds

indexes for many new layers that have not been queried before.

However, DeepEverest performs the best after 400 queries because

Dong He, Maureen Daum, and Magdalena Balazinska

(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 8: Query times of SimilarHigh queries when varying
𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠. Note the log scale on the 𝑥-axis.

Table 2: Number of inputs run by the DNN at query time for
SimilarHigh queries on CIFAR10-VGG16.

Layer-Neuron

group size

Number of partitions

4 8 16 32 64 128 256

mid-1 3334 1429 667 323 159 79 40

mid-3 5462 2902 1441 736 727 556 409

mid-10 8941 6869 4339 4219 3486 3492 3316

late-1 3334 1429 667 323 159 79 40

late-3 5968 2372 1106 618 682 388 390

late-10 9008 5565 2870 2745 2162 2137 1911

more queries target previously seen layers and benefit from its

indexes and query execution.

We further observe that users typically pause between queries.

DeepEverest can use that time to compute and persist its index to

disk, which would yield even better user-perceived query times.

5.4 DeepEverest Tuning
We now study the impact of DeepEverest’s tunable parameters

and how DeepEverest performs using the configuration selection

heuristic described in Section 4.6.2 with different storage budgets.

Impact of Number of Partitions. We first examine how the

number of partitions, 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 , affects the query times. In

this experiment, we measure the query times of DeepEverest on

SimilarHigh queries after building the Neural Partition Index with

varying 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 . The Maximum Activation Index is disabled

for this experiment. The results are shown in Figure 8. We also

measure the number of inputs onwhichDeepEverest performsDNN

inference during query processing. Table 2 shows the results for

CIFAR10-VGG16. Similar trends are observed for ImageNet-ResNet50.
The query time initially decreases as 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 increases. This

is because when partitions are larger, inputs that do not contribute

to the result end up being processed by DeepEverest. Hence, as

partitions get smaller, the number of inputs run by the DNN at query

time decreases. Then, after 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 increases past a certain

value (64 for CIFAR10-VGG16 and 128 for ImageNet-ResNet50), the
query time no longer decreases despite the number of inputs run

by the DNN at query time continuing to decrease. Recall that

the Neural Threshold Algorithm runs inference on all inputs in

a partition as it processes that partition. When 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 is so

large that the partition size is below the optimal 𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 for

(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 9: Speedups of query times againstReprocessAllwhen
varying 𝑟𝑎𝑡𝑖𝑜 , evaluated on the late layer for eachmodelwith
𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 set to 16.

DNN inference, the parallelization of the GPU is not fully utilized,

which causes some queries to slow down. Therefore, a good value of

𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 creates partitions whose sizes are similar to the optimal

𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 , e.g., a good 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 for CIFAR10-VGG16 is 64.

Effectiveness of Maximum Activation Index. This set of

experiments evaluates the effectiveness of the MaximumActivation

Index (maxActidx). We measure the speedup of query times

compared with ReprocessAll when varying 𝑟𝑎𝑡𝑖𝑜 , which determines

the fraction of inputs with activation values materialized in

maxActidx. Recall that when maxActidx is non-empty, it becomes

the 0-th partition. For this experiment, we set 𝑛𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠=16,

which is a setting that performs well (see Figure 8). As discussed

in Section 4.6.1, this index is designed to accelerate FiringMax and

SimilarTop queries. We measure the speedups of such queries on

different sizes of neuron groups.

Figure 9 shows the results on CIFAR10-VGG16 and ImageNet-
ResNet50. Note that when 𝑟𝑎𝑡𝑖𝑜=0, DeepEverest runs without

maxActidx because it is empty. The speedups of query times are

generally much higher when 𝑟𝑎𝑡𝑖𝑜 is any non-zero value. This

is because maxActidx enables DeepEverest to return the query

results after processing a subset of the inputs from the 0-th partition

(i.e., the Maximum Activation Index) for some neurons, rather

than processing the entire partition. We also observe that the

speedups of query times plateau or drop as 𝑟𝑎𝑡𝑖𝑜 further increases.

This is because loading maxActidx from disk takes longer as

𝑟𝑎𝑡𝑖𝑜 increases. When a small index provides enough information

for DeepEverest to find the top-𝑘 results after processing only

some inputs from the 0-th partition, increasing 𝑟𝑎𝑡𝑖𝑜 degrades the

speedups; the additional inputs in the index do not improve the

query times, and loading a larger index takes longer. The best value

of 𝑟𝑎𝑡𝑖𝑜 in practice depends on the queries and the distributions of

the activations of the neuron group being queried. Empirically, we

observe that a small value of 𝑟𝑎𝑡𝑖𝑜 (e.g., 0.05) is good for FiringMax
and SimilarTop queries on the two datasets and models.

Impact of Storage Budget. In previous sections, we examined

the performance of DeepEverest with a storage budget of 20%

of full materialization. Here we examine how well DeepEverest

performs when the configuration selection algorithm described

in Section 4.6.2 has different storage budgets. We measure the

speedups of query times compared with ReprocessAll for SimilarTop
and SimilarHigh queries that target medium and large neuron

DeepEverest: Accelerating Declarative Top-KQueries for Deep Neural Network Interpretation

(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 10: Speedups against ReprocessAll by DeepEverest
given different storage budget.

(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 11: Preprocessing times for DeepEverest and
ProprocessAll.

(a) CIFAR10-VGG16 (b) ImageNet-ResNet50

Figure 12: Preprocessing storage for DeepEverest and
ProprocessAll.

groups, as shown in Figure 10. We observe that empirically

DeepEverest delivers high speedups across different storage

budgets, which also suggests that our configuration selection

heuristic is robust. With more storage budget, DeepEverest

performs better. We also observe that the speedups of queries on

medium neuron groups are generally greater than the speedups for

queries on large neuron groups due to the curse of dimensionality.

5.5 Preprocessing Costs
In this set of experiments, we evaluate the costs of preprocessing

for DeepEverest when given a 20% storage budget of full

materialization. We preprocess all the layers for each dataset

and model from the first layer to the last layer. Convolutional

layers, activation layers, and batch normalization layers are

Figure 13: Speedups of query times by DeepEverest with
inter-query acceleration against DeepEverest without it.
The memory budget for inter-query acceleration is 128 MB.

considered separate layers. We measure the cumulative times for

each component in preprocessing: DNN inference, data persistence

(for PreprocessAll, persisting the activations to disk; for DeepEverest,
persisting the Neural Partition Index and Maximum Activation

Index to disk), and index computation. We force-write the data to

disk whenmeasuring the time for data persistence.We also measure

the cumulative storage of the two methods as the preprocessing

proceeds. Figure 11 and Figure 12 show the preprocessing times

and storage of DeepEverest and PreprocessAll.
In general, DeepEverest has similar preprocessing times

compared with PreprocessAll. The time for DeepEverest to build the

Neural Partition Index and Maximum Activation Index and persist

them to disk is similar to the time for PreprocessAll to persist the

activations to disk. Comparing the results for the early layers with

that of the late layers on both datasets and models, it is obvious that

DNN inference takes longer for the late layers than for the early

layers. We also observe that data persistence and index computation

for the early layers takes longer than the late layers because the

sizes of the early layers are usually greater than that of the late

layers, as indicated in Figure 12.

Considering these results along with the query performance

results shown in Section 5.2, DeepEverest can achieve comparable

and sometimes better query times than PreprocessAll, with only 20%

of its storage overhead and similar preprocessing times.

5.6 Effectiveness of Inter-Query Acceleration
Finally, we evaluate the effectiveness of inter-query acceleration

for sequences of related queries. We randomly select five inputs

and construct sequences of related queries for each input on

various layers. The first query is a SimilarHigh query that targets

a neuron group of size 1. For every subsequent query, we add a

randomly selected RandomHigh neuron to the previous query’s

neuron group. Thus, the 𝑛-th query targets a neuron group of size

𝑛. We focus only on adding neurons since it is straightforward for

queries that remove neurons from their neuron groups to retrieve

activations from the in-memory cache.Wemeasure the speedups for

query times of DeepEverest with inter-query acceleration against

DeepEverest without it for each query.

Figure 13 shows the median of the speedups for each query on

CIFAR10-VGG16 given a cache budget of 128 MB. We observe that

even with this small budget, inter-query acceleration consistently

improves DeepEverest’s query times across different layers. Not

shown in the paper, we also experiment with different budgets. We

find that inter-query acceleration consistently speeds up related

queries and larger budgets generally lead to larger speedups. In

Dong He, Maureen Daum, and Magdalena Balazinska

Figure 13, the speedups for the first query are around 1× since the

in-memory cache is initially empty. On later queries when the cache

is populated, DeepEverest with inter-query acceleration achieves

speedups of 2.22× to 5.02× on the late layer, 1.32× to 2.08× on the

mid layer, and 1.05× to 1.59× on the early layer. The speedup for

the early layer is smaller because this layer is larger, and hence

the in-memory cache can hold fewer inputs’ activations of the full

layer. We observe larger speedups for the early layer with a larger

memory cache budget.

6 DISCUSSION
This section discusses some possible optimizations and extensions

for DeepEverest.

Incrementally Returning Query Results. The Neural

Threshold Algorithm runs until it has found 𝑘 inputs whose

distances to the sample 𝑠 are at most the threshold value, 𝑡 .

However, the Neural Threshold Algorithm may be certain that

some inputs are part of the top-𝑘 set before it has found the

complete set. For queries where 𝑘>1, after each round of the

algorithm, DeepEverest returns inputs in 𝑌⊆𝑈 , where for all 𝑦∈𝑌 ,
𝑑𝑖𝑠𝑡 (𝑠,𝑦, 𝑔)≤𝑡 , and continues running to find the rest of the 𝑘−|𝑌 |
results. DeepEverest’s optimizations enable it to incrementally

return the top-𝑘 results quickly, and therefore reduces the time

required to return the first part of the answer to the user.

Approximation. Modifying DeepEverest to give approximate

results is straightforward. Following the definition of the 𝜃 -

approximation in Fagin’s paper [12], a 𝜃 -approximation (let 0 <

𝜃 < 1 be given) to the top-𝑘 answers is a collection of 𝑘 inputs,𝑈 ,

(and their distances to the sample input) such that for each𝑦∈𝑈 and

each 𝑧∈𝐷\𝑈 , 𝜃 ∗ 𝑑𝑖𝑠𝑡 (𝑠,𝑦, 𝑔) ≤ 𝑑𝑖𝑠𝑡 (𝑠, 𝑧, 𝑔). Let 𝑡 be the threshold
value from eq. (3). DeepEverest can find a 𝜃 -approximation to the

top-𝑘 answers by modifying the termination condition in eq. (4) to

be,

max

(𝑥,𝑑𝑖𝑠𝑡 (𝑠,𝑥,𝑔)) ∈𝑡𝑜𝑝
{𝑑𝑖𝑠𝑡 (𝑠, 𝑥, 𝑔)} ≤ 𝑡/𝜃 (5)

Early Stopping. DeepEverest can be further modified into an

interactive process in which it can show the user the current top-𝑘

results with a guarantee about the degree of approximation to the

correct top-𝑘 results. Based on this guarantee, the user can decide

whether they would like to stop the process at any time. Let 𝑏 be the

largest distance to the sample input from the current top-𝑘 results,

let 𝑡 be the current threshold value, and let 𝜃 = 𝑡/𝑏. If the algorithm
is stopped early, we have 0 < 𝜃 < 1 because 𝑏>𝑡 . Therefore, the

current top-𝑘 results are then a 𝜃 -approximation to the correct top-

𝑘 answers. Hence, the user can be shown the current top-𝑘 results

and the number 𝜃 , with a guarantee that they are being shown a

𝜃 -approximation.

7 CONCLUSION
We presented DeepEverest, a system that accelerates top-𝑘 queries

for DNN interpretation. DeepEverest, with various optimizations,

reduces the number of activations computed at query time with low

storage overhead, while guaranteeing correct results. With less than

20% of the storage of full materialization, DeepEverest accelerates

individual queries by up to 62× and consistently outperforms other

methods over various multi-query workloads.

REFERENCES
[1] [n.d.]. Amazon EC2 - P2 Instances. https://aws.amazon.com/ec2/instance-types/

p2/. Accessed: 2021-03-30.

[2] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. 2007. Best Position

Algorithms for Top-K Queries. In International Conference on Very Large Data
Bases (VLDB). ACM, 495–506.

[3] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice

Simard, and Jina Suh. 2015. ModelTracker: Redesigning Performance Analysis

Tools for Machine Learning. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems. 337–346.

[4] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions. In 2006 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’06). IEEE, 459–468.

[5] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Christian Theobalt, and

Gerhard Weikum. 2006. IO-Top-K: Index-Access Optimized Top-K Query

Processing. (2006).

[6] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017.

Network Dissection: Quantifying Interpretability of Deep Visual Representations.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
6541–6549.

[7] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and

Antonio Torralba. 2020. Understanding the Role of Individual Units in a Deep

Neural Network. Proceedings of the National Academy of Sciences (2020).
[8] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for

Associative Searching. Commun. ACM 18, 9 (1975), 509–517.

[9] Steven P Callahan, Juliana Freire, Emanuele Santos, Carlos E Scheidegger,

Cláudio T Silva, and Huy T Vo. 2006. VisTrails: Visualization Meets Data

Management. In Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data. 745–747.

[10] Rich Caruana, Hooshang Kangarloo, John David Dionisio, Usha Sinha, and David

Johnson. 1999. Case-Based Explanation of Non-Case-Based Learning Methods. In

Proceedings of the AMIA Symposium. American Medical Informatics Association,

212.

[11] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-

Sensitive Hashing Scheme Based on p-Stable Distributions. In Proceedings of the
Twentieth Annual Symposium on Computational Geometry. 253–262.

[12] Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal Aggregation

Algorithms for Middleware. J. Comput. System Sci. 66, 4 (2003), 614–656.
[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. 2014. Rich

Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
580–587.

[14] Abel Gonzalez-Garcia, Davide Modolo, and Vittorio Ferrari. 2018. Do Semantic

Parts Emerge in Convolutional Neural Networks? International Journal of
Computer Vision 126, 5 (2018), 476–494.

[15] Ian J. Goodfellow, Quoc V. Le, Andrew M. Saxe, Honglak Lee, and Andrew Y.

Ng. 2009. Measuring Invariances in Deep Networks. In Proceedings of the 22nd
International Conference on Neural Information Processing Systems (Vancouver,
British Columbia, Canada) (NIPS’09). Curran Associates Inc., Red Hook, NY, USA,

646–654.

[16] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial

Searching. SIGMOD Rec. 14, 2 (June 1984), 47–57. https://doi.org/10.1145/

971697.602266

[17] Xixian Han, Jianzhong Li, and Hong Gao. 2015. Efficient Top-K Retrieval on

Massive Data. IEEE Transactions on Knowledge and Data Engineering 27, 10 (2015),
2687–2699.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[19] Ihab F Ilyas, Walid G Aref, and Ahmed K Elmagarmid. 2002. Joining Ranked

Inputs in Practice. In Proceedings of the 28th International Conference on Very
Large Data Bases. Elsevier, 950–961.

[20] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product Quantization

for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2010), 117–128.

[21] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-Scale Similarity

Search with GPUs. IEEE Transactions on Big Data (2019).
[22] Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and Duen Horng Polo Chau.

2017. ActiVis: Visual Exploration of Industry-Scale Deep Neural Network Models.

IEEE Transactions on Visualization and Computer Graphics 24, 1 (2017), 88–97.
[23] Minsuk Kahng, Dezhi Fang, and Duen Horng Chau. 2016. Visual Exploration

of Machine Learning Results Using Data Cube Analysis. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics. 1–6.

[24] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015. Visualizing and

Understanding Recurrent Networks. arXiv preprint arXiv:1506.02078 (2015).
[25] Josua Krause, Adam Perer, and Kenney Ng. 2016. Interacting with Predictions:

Visual Inspection of Black-Box Machine Learning Models. In Proceedings of the

https://aws.amazon.com/ec2/instance-types/p2/
https://aws.amazon.com/ec2/instance-types/p2/
https://doi.org/10.1145/971697.602266
https://doi.org/10.1145/971697.602266

DeepEverest: Accelerating Declarative Top-KQueries for Deep Neural Network Interpretation

2016 CHI Conference on Human Factors in Computing Systems. 5686–5697.
[26] Sanjay Krishnan and Eugene Wu. 2017. PALM: Machine Learning Explanations

For Iterative Debugging. In Proceedings of the 2nd Workshop on Human-In-the-
Loop Data Analytics. 1–6.

[27] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).

[28] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015.

Principles of Explanatory Debugging to Personalize InteractiveMachine Learning.

In Proceedings of the 20th International Conference on Intelligent User Interfaces.
126–137.

[29] Zachary C Lipton. 2018. The Mythos of Model Interpretability. Queue 16, 3 (2018),
31–57.

[30] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu, and Shixia Liu.

2016. Towards Better Analysis of Deep Convolutional Neural Networks. IEEE
Transactions on Visualization and Computer Graphics 23, 1 (2016), 91–100.

[31] Shuying Liu and Weihong Deng. 2015. Very Deep Convolutional Neural Network

Based Image Classification Using Small Training Sample Size. In 2015 3rd IAPR
Asian Conference on Pattern Recognition (ACPR). IEEE, 730–734.

[32] Ting Liu, Andrew W Moore, and Alexander Gray. 2006. New Algorithms for

Efficient High-Dimensional Nonparametric Classification. Journal of Machine
Learning Research 7, Jun (2006), 1135–1158.

[33] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,

Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. 2006. ScientificWorkflow

Management and the Kepler System. Concurrency and Computation: Practice and
Experience 18, 10 (2006), 1039–1065.

[34] Minghuang Ma, Haoqi Fan, and Kris M Kitani. 2016. Going Deeper into First-

Person Activity Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 1894–1903.

[35] Parmita Mehta, Stephen Portillo, Magdalena Balazinska, and Andrew J. Connolly.

2020. Toward Sampling for Deep Learning Model Diagnosis. In 36th IEEE
International Conference on Data Engineering, ICDE. IEEE, 1910–1913.

[36] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. ModelHub: Deep

Learning Lifecycle Management. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). IEEE, 1393–1394.

[37] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality.

Advances in Neural Information Processing Systems 26 (2013), 3111–3119.
[38] VinodNair andGeoffrey EHinton. 2010. Rectified Linear Units Improve Restricted

Boltzmann Machines. In ICML.
[39] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune.

2016. Synthesizing the Preferred Inputs for Neurons in Neural Networks via

Deep Generator Networks. In Advances in Neural Information Processing Systems.
3387–3395.

[40] NVIDIA. [n.d.]. NVIDIA Data Center Deep Learning Product Performance.

https://developer.nvidia.com/deep-learning-performance-training-inference.

[41] Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert,

Katherine Ye, and Alexander Mordvintsev. 2018. The Building Blocks of

Interpretability. Distill 3, 3 (2018), e10.
[42] Stephen M Omohundro. 1989. Five Balltree Construction Algorithms. International

Computer Science Institute Berkeley.

[43] HweeHwa Pang, Xuhua Ding, and Baihua Zheng. 2010. Efficient Processing of

Exact Top-K Queries over Disk-Resident Sorted Lists. The VLDB Journal 19, 3
(2010), 437–456.

[44] Nicolas Papernot and Patrick McDaniel. 2018. Deep k-Nearest Neighbors:

Towards Confident, Interpretable and Robust Deep Learning. arXiv preprint
arXiv:1803.04765 (2018).

[45] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I

Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1135–1144.

[46] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.

2015. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision 115, 3 (2015), 211–252.

[47] Thibault Sellam, Kevin Lin, Ian Huang, Michelle Yang, Carl Vondrick, and Eugene

Wu. 2019. DeepBase: Deep Inspection of Neural Networks. In Proceedings of the
2019 International Conference on Management of Data. 1117–1134.

[48] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional

Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556
(2014).

[49] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and B. Recht. 2017.

KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics. In 2017
IEEE 33rd International Conference on Data Engineering (ICDE). 535–546. https:

//doi.org/10.1109/ICDE.2017.109

[50] Rupesh Kumar Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez,

and Jürgen Schmidhuber. 2013. Compete to Compute. In Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 2
(Lake Tahoe, Nevada) (NIPS’13). Curran Associates Inc., Red Hook, NY, USA,

2310–2318.

[51] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2014. Intriguing Properties of Neural Networks.

In International Conference on Learning Representations. http://arxiv.org/abs/

1312.6199

[52] Martin Theobald, Gerhard Weikum, and Ralf Schenkel. 2004. Top-K Query

Evaluation with Probabilistic Guarantees. In Proceedings of the Thirtieth
International Conference on Very Large Data Bases. 648–659.

[53] Manasi Vartak, Joana M F. da Trindade, Samuel Madden, and Matei Zaharia.

2018. MISTIQUE: A System to Store and Query Model Intermediates for Model

Diagnosis. In Proceedings of the 2018 International Conference on Management of
Data. 1285–1300.

[54] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,

Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. MODELDB: A

System for Machine Learning Model Management. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics. 1–3.

[55] Eric Wallace, Shi Feng, and Jordan Boyd-Graber. 2018. Interpreting Neural

Networks with Nearest Neighbors. arXiv preprint arXiv:1809.02847 (2018).

[56] YairWeiss, Antonio Torralba, and Rob Fergus. 2009. Spectral Hashing. InAdvances
in Neural Information Processing Systems, D. Koller, D. Schuurmans, Y. Bengio,

and L. Bottou (Eds.), Vol. 21. Curran Associates, Inc.

[57] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya

Parameswaran. 2018. HELIX: Holistic Optimization for Accelerating Iterative

Machine Learning. Proc. VLDB Endow. 12, 4 (Dec. 2018), 446–460. https://doi.

org/10.14778/3297753.3297763

[58] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.

Understanding Neural Networks Through Deep Visualization. arXiv preprint
arXiv:1506.06579 (2015).

[59] Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and Understanding

Convolutional Networks. In Computer Vision - ECCV 2014 - 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I (Lecture
Notes in Computer Science), David J. Fleet, Tomás Pajdla, Bernt Schiele, and Tinne

Tuytelaars (Eds.), Vol. 8689. Springer, 818–833. https://doi.org/10.1007/978-3-

319-10590-1_53

[60] Shile Zhang, Chao Sun, and Zhenying He. 2016. Listmerge: Accelerating Top-K

Aggregation Queries over Large Number of Lists. In International Conference on
Database Systems for Advanced Applications. Springer, 67–81.

[61] Bolei Zhou, David Bau, Aude Oliva, and Antonio Torralba. 2018. Interpreting

Deep Visual Representations via Network Dissection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 41, 9 (2018), 2131–2145.

[62] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.

2014. Object Detectors Emerge in Deep Scene CNNs. arXiv preprint
arXiv:1412.6856 (2014).

[63] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. 2018. Revisiting

the Importance of Individual Units in CNNs via Ablation. arXiv preprint
arXiv:1806.02891 (2018).

https://developer.nvidia.com/deep-learning-performance-training-inference
https://doi.org/10.1109/ICDE.2017.109
https://doi.org/10.1109/ICDE.2017.109
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.14778/3297753.3297763
https://doi.org/10.14778/3297753.3297763
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Related Work
	4 DeepEverest
	4.1 Baselines
	4.2 Overview of DeepEverest
	4.3 Neural Partition Index
	4.4 Neural Threshold Algorithm
	4.5 Incremental Indexing
	4.6 Optimizations

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Fundamental Space-Time Tradeoff
	5.3 Multi-Query Workloads
	5.4 DeepEverest Tuning
	5.5 Preprocessing Costs
	5.6 Effectiveness of Inter-Query Acceleration

	6 Discussion
	7 Conclusion
	References

