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Abstract

Radio Frequency Identification (RFID) technology is
increasingly being used to improve various industrial
processes, such as supply-chain management. Suc-
cesses of this technology in industrial settings are
leading many to consider other uses of RFID, includ-
ing user-oriented public deployments. However, the
noisy, low-level data produced by RFID readers is al-
most impossible to use or comprehend in most but
the simplest settings.

We present PEEX (Probabilistic Event EXtrac-
tor), a system that manages probabilistic high-level
events from imprecise and erroneous RFID data.
PEEX allows users to define probabilistic events from
lower-level events. By using probabilities, the system
copes with the noise in the data and the inherent am-
biguity in the event extraction. We have built PEEX
as a layer on top of a traditional RDBMS. We demon-
strate, through experiments with real RFID traces
collected on a small antenna deployment, that PEEX
significantly improves event detection rates compared
with deterministic techniques, and provides applica-
tions a flexible trade-off between event recall and pre-
cision.

1 Introduction

In the past several years, Radio Frequency Identi-
fication (RFID) technology has become increasingly
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Figure 1: Read-rates measured for various ob-
jects

popular as a flexible and relatively low-cost solution
for tagging and wireless identification [35]. Currently,
the main use of RFID technology is in the supply-
chain management domain [32]. However, successes
of RFID in industrial settings are leading many to
consider pervasive deployments of this technology,
where objects and people carry tags and RFID an-
tennas are scattered through the environment. Such
deployments can potentially enable many new types
of user-oriented applications [5, 33] from simple track-
ing and alerting services, to sophisticated studies of
social phenomena.

Managing RFID data, however, raises significant
challenges [7, 21]. In particular, RFID readers pro-
duce streams of low-level observations of the form:
“Tag 344 was last seen at antenna 647 at 3:20pm”.
This low-level data must be transformed into high-
level events meaningful to applications, such as “Alice
entered the conference room at 3:20pm”, or “Alice’s
keys appear to be missing from her purse”. There
are two important issues in performing such extrac-



tions. The first issue is reliability. RFID antennas
frequently fail to read tags in their vicinity [15, 22]
and nearby antennas can detect the same tags at the
same time [22]. Figure 1 illustrates some sample read-
rates that we observed in laboratory experiments and
in a 2-week pilot study on a small deployment [37].
As the figure shows, failures are frequent, especially
on metal objects, or when participants move around
freely.

The second issue in transforming low-level obser-
vations into high-level events is ambiguity. A com-
bination of low-level tag reads may not correspond
uniquely to a single high-level event. This is espe-
cially true in pervasive deployments where detecting
a person at a sequence of locations may indicate that
they are performing one of several possible activities,
e.g., Alice is printing a paper or sending a fax.

Most previous schemes for RFID event detection
ignore ambiguity and input data errors [34, 39].
Schemes that do consider data errors propose to
clean the data deterministically before processing
it [22, 23, 29, 34]. A deterministic model cannot han-
dle ambiguous events, and, as we show in this paper,
input data errors can cause a deterministic extraction
to miss significant numbers of events. We also show
that, even though it usually helps, in some cases, de-
terministic RFID data cleaning can in fact lower the
detection rates for some events.

To address the limitations of existing techniques,
we propose to use a probabilistic model for processing
RFID data: we propose a new approach and present
a new system for extracting high-level probabilistic
RFID events from low-level tag reads.

In this paper, we focus on techniques for extract-
ing high-level events from RFID data. We do not ad-
dress query execution over the detected events. How-
ever, because the output that our system produces
follows standard probabilistic models, existing prob-
abilistic databases [8, 9, 38, 10] could be used to ex-
ecute queries over our system’s output.

We implemented PEEX as a layer on top of an
RDBMS [26]. Using experiments with real RFID
data traces, we show that a probabilistic approach to
event detection significantly improves detection rates
compared with deterministic techniques. Improved
detection rates come at the cost of a lower precision.
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Figure 2: RFID deployment and errors

However, because probabilities are associated with
all detected events, applications can choose their de-
sired trade-off between detection rate and precision
by considering only events above some probability
threshold.

Overall, we show that the uncertainty of a moni-
tored environment cannot be cleaned away and hid-
den from applications. Instead, modeling and incor-
porating that uncertainty in the form of probabilistic
rather than deterministic events is necessary, espe-
cially for pervasive RFID deployments and applica-
tions.

2 Application Scenarios

Unlike other location systems that tag objects with
expensive devices [28, 36], RFID-based systems can
rely on inexpensive, passive RFID tags (the typical
cost of a tag is approximately 20 to 40 cents [30]).
Low-cost tags make it feasible to track large numbers
of objects, opening the door to many new types of
useful services.

To experiment with RFID technology and appli-
cations, we have deployed RFID antennas in all the
hallways in our department building. Figure 2(a) il-
lustrates our deployment. Read ranges for RFID de-
pend primarily on the tags — some tags are only
read from about one foot while others can be read
as far as 10 to 20 feet [30]. Read ranges, however,
also depend on antenna positions, orientations, man-
ufacturers, and on the environment. RFID readers
located in nearby offices poll antennas continuously
and send information about detected tags to a back-
end database. We use our RFID deployment as the
motivating scenario throughout the paper.



Given such a deployment, a simple yet useful ap-
plication consists in tagging people’s belongings and
departmental assets and allowing owners to track the
movements of their objects over time. This appli-
cation enables owners to find their objects, receive
alerts when they forget their objects behind, or sim-
ply recover the historical movements of an object
(e.g., to discover the source of damage to an object
or who may have used it last). If people also carry
RFID tags, more sophisticated applications can en-
able users to find each other at any time, or receive an
alert when other users enter or leave specific locations
(e.g., their office or the conference room).! Tracking
participants in a community also enables studies of
various social behaviors.

Concretely, consider an application that enables
users to determine the current location of co-workers.
In most cases, users do not want to see low-level in-
formation such as “Chuck was last seen at antenna
37 at 11:56am” but higher level information such as
In-Business-Meeting(Chuck, Alice). To enable
such a scenario, we need a system to transform the
imprecise, low-level sensor data into high-level events
meaningful to applications. In this example, the
In-Business-Meeting(Chuck, Alice) event occurs
when Chuck and Alice both walk into a room to-
gether, each with their notebooks. Such a high-
level event is likely to be constructed from lower-
level events that indicate that a person has entered a
room, that their notebook has entered the same room
around the same time and that they have not left the
room before the other attendee arrives. We may be
even more certain of our conclusion if this pair has a
history of meeting together in specific offices.

These scenarios illustrate the main challenges we
face:

Ambiguity. With pervasive applications, the
same set of low-level observations can correspond to
multiple distinct high-level events. For example, it is
never certain that Alice and Bob are having a busi-
ness meeting together, one of them may have stopped
by to work with another officemate. Additionally,
the two colleagues may not always meet to only work

1In these applications, privacy issues are paramount, but
these issues are outside the scope of this paper.

together. A fraction of the time, they may instead
be going to attend a seminar. The high-level events
that can be extracted from RFID data are thus prob-
abilistic rather than deterministic in nature. This
uncertainty propagates as probabilistic events are ag-
gregated into even higher-level events. For example,
if the system has only limited confidence in the un-
derlying Entered-Room events, the confidence in the
business meeting event will be accordingly lower.

Errors. Asillustrated in Figure 1, RFID data con-
tains significant amounts of false negatives. In gen-
eral, error rates depend on the equipment used, the
object material (e.g., metallic objects or objects con-
taining water have much lower detection rates than
other objects), and the orientation of tags and anten-
nas [37]. RFID data may also contain false positives
where nearby antennas detect the same tag at the
same time as illustrated in Figure 2(b). False posi-
tive rates depend primarily on antenna deployment.
In our case, for example, antennas cover slightly over-
lapping spaces, causing some false positives. False
positives also occur in higher level events, especially
those which depend on the non-existence of low level
sightings.

Cleaning such errors with certainty is not always
possible. For example, if a person is seen by the ele-
vator and then disappears, it is not certain that the
person left the building. The person may have gone
to get some coffee, but the RFID antenna by the cof-
fee shop failed to detect them. Similarly, if a cell
phone appears to be in two offices at the same time,
it is not necessarily clear which location is correct.

In the next sections, we present PEEX, our prob-
abilistic event extraction system, and show how it
addresses the above challenges. We present PEEX’s
probabilistic event language in Section 3. In Sec-
tion 4, we present PEEX’s system architecture and
the detailed event detection algorithm. We evalu-
ate PEEX’s performance in Section 5, present related
work in Section 6, and conclude in Section 7.

3 Probabilistic Event Language

In this section, we present PEEX’s event language.



3.1 Probabilistic Event Model

The probabilistic event model used in PEEX borrows
elements from the event model proposed by Demers et
al. [12] and from recent probabilistic data models [8,
20, 38].

3.1.1 Events

We start by defining a deterministic event, or, shortly,
an event, which is a named tuple of the form:

EventType(evID, 44, ..., A, time)

Here EventType is the type name of that event:
PEEX stores all events of this type in a relation called
EventType. The attributes are as follows: evID is a
system-generated event key, A1, ..., Ay are the cate-
gorical attributes of the event, and time is a temporal
attribute that capture the time when the event oc-
curred. Unlike Demers et al., in PEEX, we assume
that events are instantaneous: i.e., their duration is
always one time-unit?. Examples of events are:

SIGHTING(evID, tagID, antID, time)

ENCOUNTER(evID, tagID1, tagID2, antID, time)

COFFEE-ENCOUNTER (evID, tagID1, tagID2, antID, time)

ENTERED-ROOM(evID, tagID, ROOMID, time),

LEFT-ROOM(evID, tagID, ROOMID, time)

IN-BUSINESS-MEETING(evID, tagID1, tagID2, ROOMID, time)

For example SIGHTING(8228,tag779,ant32,202)

represents the event that antenna 32 picked up a
reading of tag779 at time 202; the system has as-
signed the unique event identifier 8228. In PEEX,
we assume that RFID readers produce continuous
streams of RFID tag readings. These readings
are appended to a base relation called SIGHTING
and stored persistently before being processed. All
events in SIGHTING are deterministic. A primi-
tive event in PEEX thus corresponds to a tuple in
the SIGHTING relation. PEEX exploits the append-
only property of base relations to process primitive
events incrementally. By contrast, an event like
ENTERED-ROOM(5394, tag404, room555, 300) is a
composite event, in the sense that it was derived
from other more basic events: it represents the fact
that tag 404 is believed to have entered room 555
at time 300, and may be inferred by the system

2Extension to long-duration events is left for future work.

from, say, successive antenna readings of the tag 404
along the hallway leading to room 555. Here, too,
ENTERED-ROOM is a base relation where the system
inserts events as soon as they are inferred.

Note that tagID plays no special role among an
event’s attributes, and some events may refer to more
than one tag (e.g., ENCOUNTERED above), or none at
all. This is important for complex applications that
need to manage complex composite events relating
multiple people and/or objects.

3.1.2 Probabilistic Events

Unlike primitive events, most composite events in
PEEX are probabilistic. ~ Formally, a probabilis-
tic event consists of a name, a key, and a joint
probability distribution on all its other attributes.
The distribution is specified separately for the time
attribute and for the categorical attributes. For
the categorical attributes it is specified by a di-
rect enumeration of their joint probability distri-
bution.  For an illustration, consider the prob-
abilistic event ENTERED-ROOM(evID, tagID, room,
time, prob) (a prob attribute has now been added).

One event 5394 is now defined as follows:
ENTERED-ROOM(5394, tagd04, room555, 300, 0.4)
ENTERED-ROOM (5394, tagd04, room505, 300, 0.3)
ENTERED-ROOM(5394, tagd04, room501, 300, 0.1)

Event 5394 consists now of a probability distribution
on the three rooms where the system believes that tag
404 may have entered. Note that their probabilities
add up to less than one, because the system leaves
open the possibility that the tag moved to a different
location. In this illustration a single attribute (room)
was uncertain; if more attributes are uncertain, then
we simply enumerate all their combinations of values
(i.e., the entire joint distribution), for example if tag
and room are uncertain then we have tuples of the

form:
ENTERED-ROOM (5394, tag404,room505,300,0.4)
ENTERED-ROOM (5394, tag404,room561,300,0.2)
ENTERED-ROOM(5394,tagl11,room561,300,0.3)

In addition to uncertainty about categorical event
attributes, the exact time when an event occurs is of-
ten uncertain as well. As a simple example, we ran an
experiment where a person walked by two antennas
placed a few meters apart in a hallway. The travel
time, as measured by the antennas tag reads, var-



ied between 0.7 seconds and 2.5 seconds depending
on the experimenter’s speed. If the first antenna was
located a few meters from an office door, and the sec-
ond antenna was the door, then, in our experiment,
the ENTERED-ROOM event would occur between 0.7 and
2.5 seconds after the last antenna sighting. In gen-
eral, because RFID tag reads occur only when objects
pass in front of antennas, and because it would be
costly to cover every square foot of an environment,
individual tags are detected only periodically. This
periodicity is one reason for the uncertainty about
the exact timing of events.

To capture this uncertainty in PEEX, the time at-
tribute value is specified independently, by a prob-
ability distribution function. The system currently
has support for the normal distribution. Thus, the
time value of a probabilistic attribute is an abstract
data type consisting of a mean and variance for rep-
resenting the normal distribution. For example, the
last event above may be specified as follows:

ENTERED-ROOM (56394, tag404, room508, mnormal(3200,52), 0.1)

meaning that the time attribute has a normal dis-
tribution with a mean of 3200 and a variance of 52.
In order to maintain simplicity, PEEX requires all
events to use a normal distribution for its time at-
tribute. The normal distribution is ideal because the
class of normal distributions is closed under linear
combinations.

Since the time attribute of a probabilistic event
is an abstract data type, only a limited number
of operations are supported over this attribute in-
cluding creation (e.g., we may create a new value
normal (310,25) representing a normal distribution
with mean 310 and standard deviation 25), copy (e.g.,
in SET x.time = y.time we simply copy the pdf
from event y to event x), translation by a constant
(e.g., in the expression x.time + 30), translation by
another normal distribution (e.g., in SET x.time =
y.time + normal(400,30.4))and comparison (e.g.,
the predicate x.time < y.time is interpreted as the
probability that the pdf for x.time is less than the
pdf for y.time).

3.2 Event Language

In PEEX, users define composite probabilistic events
from lower level primitive events using a declarative
query language with a single construct:

FORALL I, I, ..

[ CTABLE C |

WHERE Condition

[ WITH m FALSE NEGATIVES ]

[ WITH q FALSE POSITIVES |

CREATE EVENT E

SET Assignments

The arguments of the FORALL clause, [, .y Iy,
correspond to primitive events, to previously defined
composite events, and/or to regular database tables.
They have the same syntax as a SQL FOR clause and
are possibly preceded by a negation sign ! as ex-
plained in Section 3.4.3. The condition in the WHERE
clause actually consists of four components. The first
component consists of conditions concerning the or-
der of events (specified using the SEQ operator). The
second component talks about how to use the confi-
dence table. While the third and fourth components
consist of conditions about only the positive relations
in the FORALL clause and those about the negated re-
lations, respectively. Each component has a syntax
very similar to the body of a traditional WHERE clause.
For brevity, we do not use this exact syntax in the
examples that follow.
E is the type name of the composite event. The SET

clause defines the attributes (categorical and tempo-
ral) of the new event. A trivial illustration is given

in the example below:
FORALL SIGHTING I
WHERE I.antID = ’antenna036’
CREATE EVENT NEAR-ROOM E
SET E.tagID = I.taglD,
E.room = ’Room508’,
E.time = I.time;

Given a base event SIGHTING(8778, tagd32,
antenna036, 420) the system will generate a com-
posite event NEAR-ROOM(238, tag432, Room508,
420). This is a deterministic event (i.e., its proba-
bility is 1, and its time attribute is a point, 420), and
the event id 238 is system-generated. We assume here
that antenna 036 is located at the entrance to room
508. In general, applications are not interested in
low-level events, but instead in such composite high-
level events, which are more meaningful.

The challenge is to enable applications to express

] I’!‘L



FORALL SIGHTING I1, SIGHTING I2, SIGHTING I3
WHERE SEQ(I1, I2, I3)

AND Il.antennalD = ’antenna32’
AND I2.antennalD = ’antenna35’
AND I3.antennalID = ’antenna39’

AND I1.tagID = I2.tagID
AND I2.tagID = I3.tagID

CREATE EVENT ENTERED-ROOM E

SET E.tagID := Il.tagID
( E.room := ’roomb555° CONFIDENCE 0.4 |
E.room := ’room505° CONFIDENCE 0.3
E.room := ’room501’ CONFIDENCE 0.1)
E.time := I3.time

FORALL SIGHTING I1, SIGHTING I2, SIGHTING I3
CTABLE FLOOR5-STATS C

WHERE SEQ(I1, I2, I3)
AND Il.antennalD = ’antenna32’
AND I2.antennalD = ’antenna35’
AND I3.antennalD = ’antenna39’
AND I1.tagID = I2.tagID
AND I2.tagID = I3.tagID
AND I1.tagID = C.tagID

CREATE EVENT ENTERED-ROOM E

SET E.tagID := Il.taglD
( E.room := C.room CONFIDENCE C.conf )
E.time := I3.time

(a) No confidence table

(b) Using a confidence table

Figure 3: Examples of probabilistic event definitions for ENTERED-ROOM

such events and for the system to detect them in spite
of errors in the input readings and uncertainty in the
way the composite events are defined. This is where
the additional clauses come into play. We explain
these clauses in sections following the next section
which presents a simple taxonomy of events.

3.3 Event Taxonomy

In this section we describe a taxonomy for events in
our event language. Along with definitions of the
three classes of events, we also give examples of events
in each class.

We begin with Lg, the class of all raw events. All
events in SIGHTING belong to L.

Next is Ly, which contains all events in Ly and
also all events which can be defined using one SEQ
operator, only conjunctions and no negations. An
example of an event in L, is the ENTERED-ROOM event
(Figure 3).

Finally we have Lo, the class consisting of all events
in L in addition to all those events defined on top
of Ly events using one SEQ operator with both con-
junctions and negations allowed. An example of
such an event, is In-Business-Meeting which is de-
tected when the system sees one person Enter-Room
with their notebook, followed by another person (also
with their notebook) and the first person has not
Left-0ffice before the second person arrives.

Disjunctions are captured in our language through
the use of multiple event definitions. Therefore,
there is no need for nested negations or conjunctions,

as these can be defined with disjunctions. For ex-
ample, if an event consists of a sequence operator
SEQ(A, ! (AND(B,C)),D) this could be represented by
two separate event defnitions consisting of sequence
operators SEQ(A, !B, D) and SEQ(A, !C, D). This
allows us to represent all events that are naturally
defined using nested negations or conjunctions, by
using multiple event definitions in L.

3.4 Ambiguous Composite Events

A given combination of RFID tag readings defines a
composite event only with limited certainty. As an
example, in our deployment, antennas are placed two
to three offices apart. When a user stops between
a pair of antennas, the user may thus be in one of
several offices. Furthermore, the visit to a room may
correspond to different high-level tasks (e.g., printing
a paper or faxing some documents).

One way to capture such ambiguity, is for PEEX’s
language to provide a CONFIDENCE modifier for
the SET clause. This modifier lets a user state
the probability that a combination of observations
matches a high-level event. Consider the example
in Figure 3(a), which defines the composite event
ENTERED-ROOM. We assume that three consecutive
readings of the same tag by antennas 32, 35, and 39,
signal that the tag moves towards a cluster of three
rooms, most likely towards room 555, but maybe to-
wards 505 or 501. These alternatives could be cap-
tured in the event definition by assigning different
values to the room attribute, with different confi-



dences. Such choices define a joint probability distri-
bution on the room attribute of the new event. Sim-
ilarly, users could define joint distributions on multi-

ple attributes as:
SET (A := v1, Ay = vy CONFIDENCE c |
Ay i= v1?, Ay = vy’ CONFIDENCE c’)

which assigns probability c to the values (v1,v5) and
probability ¢’ to the values (v1’,v2°).

In general, however, event confidences may not be
constant; they may depend on different attributes of
an event or may even be correlated with some at-
tributes. For example, certain people are more likely
to go to room 501 (e.g., the owner of that office)
than to room 555 (say, a conference room). The ex-
act probabilities may further depend on other factors,
such as the time of day.

To enable the specification of such correlations, we
propose to use separate confidence tables. A confi-
dence table is any table in the relational database,
but is typically a table with a schema of the form:

CONF_TABLE(A;, Ay, ..., A,, conf)

Confidence tables are explicitly created by the user
or application. Figure 3(b) illustrates the approach,
by showing the specification of the ENTERED-ROOM
event with a confidence value computed from a
FLOOR5-STATS confidence table, which appears in the
WHERE clause. In this example, the confidence is no
longer defined in the event definition, but is read from
the FLOOR5-STATS table, and depends on both the
room number and the tag identifier: the schema of
FLOOR5-STATS is simply (tagID,room,conf).

The use of a confidence table has two important
consequences. First, it allows the application to de-
fine different confidences for each person/room pair.
Second, it allows the system to learn these confidence
values from training data, as we explain below.

Next, we show how to define a probability distri-
bution function on the time attribute of an event. As
an example, consider the following event definition

for LEFT-THE-BUILDING:
FORALL SIGHTING I

WHERE I.antID = ’floorlelevator’
CREATE EVENT LEFT-THE-BUILDING E
SET E.tagID := I.tagID

E.time = normal(I.time+10, 20)
CONFIDENCE 0.6

This event definition specifies that if a person is
seen by the elevator on the first floor at some time ¢,
then that person is 60% likely to leave the building at

LEFT-THE-BUILDING

1128 | tagID time prob
1129 | AliceTag normal (410,30) 0.5
1130 | Laptop460Tag | normal(260,5) 0.8
1130 AliceTag normal (610,8) 0.7

Figure 4: Sample LEFT-THE-BUILDING events

some time which has a normal distribution with an
expected value of ¢ 4+ 10 and a standard deviation of
20. A perhaps better approach is to use a confidence

table, as illustrated below:
FORALL SIGHTING I
CTABLE WALKING-OUT-TIMES W
WHERE I.antID = ’floorlelevator’ AND I.tagID=W.tagID
CREATE EVENT LEFT-THE-BUILDING E
SET  (E.tagID := I.tagID
E.time = W.time + 10
CONFIDENCE W.conf)

This generates the composite events shown in
Fig. 4.

3.4.1 Learning Confidences

A natural question is where the confidence values
should come from. PEEX allows these confidences
to be either specified manually in the confidence ta-
bles, or learned from training data.

In order to perform learning the system needs a set
of training data, consisting of an instance of input
events, the confidence table (but an empty one), and
an instance of the output (composite) events. The
latter can be obtained from historical data by asking
users to annotate their movements with the corre-
sponding activities for some time period. From these
inputs PEEX computes the probability that a com-
bination of low-level observations matches a higher-
level event. We describe this procedure in detail in
Section 4.3.

3.4.2 Assigning Probabilities to Composite
Events

The probability of a composite event created from
deterministic events corresponds to the value as-
signed to it in the confidence clause. The proba-
bility of composite events created from probabilis-
tic events must take into account the probabilities
of the underlying, lower-level events. For example,



an ENTERED-MEETING-EVENT could be defined as the
combination of an ENTERED-ROOM and a HAS-LAPTOP
event. Let’s denote with p; and ps the probabilities of
these lower-level events. By default, PEEX assumes
that the events are independent and returns p;p- as
the probability of the composite event.

It may happen, however, that the lower-level events
are correlated because they are defined in terms of the
same composite (probabilistic) event. For example,
suppose that the definition of ENTERED-ROOM relies
on another composite event, BOB-LEFT-HIS-0FFICE
which has probability p. Thus, p1 = pgr... where
q,,...are the probabilities of other composite events
used in the definition of ENTERED-ROOM.3 Assume now
that the HAS-LAPTOP event is also defined in terms of
BOB-LEFT-HIS-OFFICE, hence po = pg'r’.... Now
the ENTERED-ROOM and HAS-LAPTOP events are corre-
lated, and the probability that both have happened
is no longer pypo.

To properly handle these correlations, PEEX
rewrites the definition of each new event in terms
of its lower-level events: i.e., it recursively inlines the
definitions of all underlying probabilistic events. In
the example, such a rewrite leads to a new event def-
inition that uses BOB-IN-HIS-OFFICE twice, which
PEEX minimizes. PEEX now computes the correct
probability pgr...q'r’ ... (here p occurs only once),
which is correct.

At the end of the process, the probability that all
lower-level events occurred is multiplied by the value
in the confidence clause of the new event.

Another challenge in computing the probability
of composite events involves events which depend
on the non-existence of simpler events. For exam-
ple, the In-Business-Meeting event depends on the
non-existence of Left-Room events for the time pe-
riod of when the first person enters the room and
the second person enters the room. However, if
such Left-Room events do exist with probabilities
P1,---, Dk- We may not immediately rule out the exis-
tence of the In-Business-Meeting event, unless the
probability of at least one Left-Room event is ex-
actly 1.0. In all other cases, we must multiply our

3If an event contains choices, these choices are assumed to
be exclusive and the overall probability that the event occurred
is given by the sum of the probabilities of the choices.

original calculation for the In-Business-Event by
Hle(l — p;), the probability that none of the violat-
ing Left-Room events occured.

3.4.3 Temporal Aspects of Events

Our event definition language is primarily based on
SQL, which allows us to borrow (and extend) the
probabilistic data model described in [8, 20, 38]. Our
language also includes powerful constructs for predi-
cates on event ordering, which we borrow from [6, 39].
We describe two such constructs.

The first is SEQ(Jy, Iz, ...). This is a predi-
cate stating that the events I, I, come in
this order: i.e., I1.time < Iy.time A Ir.time <
I3.time.. ..

The second construct is the bang ! in front of a
variable in the FORALL clause, which specifies the non-
occurrence of the given event. Consider the following

event definition:
FORALL SIGHTING I;, SIGHTING ! I, SIGHTING I3

WHERE  SEQ(I1, Ia, I3)
AND I, .tagID = I,.tagID AND I».tagID = I3.tagID
AND Ij.antID = ’ant10’ AND I3.antID = ’ant20’

The definition indicates that event I should NOT
exist: the event corresponds to two sightings I, I3
of the same taglD, at antennas 10 and 20 respectively,
such that there is no sighting of the same taglD in
between them.

3.5 Coping with Sensor Errors

Sensors are brittle devices; the data they produce
frequently contains errors: a false negative is when
an RFID antenna fails to detect a tag, while a false
positive is a wrong reading (e.g., by a neighboring
antenna).

False negatives are by far the most prevalent. De-
pending on object types, we observed between 5%
and 100% false negative readings in our early deploy-
ment (i.e., metal laptops were never detected and
were lowering the detection rate of objects in the
same bag).

False positives, where two antennas detect the
same object at the exact same time, are rare. How-
ever, in our deployment, objects are frequently within
read-range of two consecutive antennas. If an object



moves slowly or stops, it may appear to be jumping
between the antennas, producing a sequence of tag

reads of the form:
(100,tag404,ant1,202)
(101,tag404,ant2,203)
(102, tag404,ant1,204)

where tag 404 appears to be jumping between an-
tenna 1 and antenna 2. Both types of errors dra-
matically impact applications that rely on complex
events, because their rate is amplified at each level
in the event hierarchy. For example, if a composite
event is based on five primitive events, each of which
has a rate of 10% false negatives, then the composite
event has a rate of 41% false negatives. If five such
events need to be combined to compute a composite
event at the next level of the hierarchy, then the error
rate there is 92%.

To address this challenge, when defining a compos-
ite event from N primitive event PEEX allows the user
to specify a WITH m FALSE NEGATIVE clause. This
clause instructs PEEX to tolerate up to m missing
primitive events. More precisely, PEEX automati-
cally extracts all subsetsof N—1, N—2,..., N—M
lower-level events and generates appropriate event
definitions. PEEX adds these extra definitions to the
system and learns their confidences using historical
data. We call these additional event definitions par-
tial events. Similarly, the user is able to specify WITH
q FALSE POSITIVE to allow for partial events, where
some events that should not have occurred were ac-
tually present.

To illustrate, consider a composite event called
COFFEE-BREAK, which we detect by observing a per-
son first on the hallway, then in the restroom (to clean
her mug), then on the hallway, then at the coffee ma-
chine, and there are no other intermediate sightings
of that person:

FORALL SIGHTING I;, SIGHTING !J;, SIGHTING I2,
SIGHTING !Jz, SIGHTING I3, SIGHTING !Js,
SIGHTING I4

WHERE SEQ([1,J2,15,J2,13,J3,14)

AND I .tagID = J;.tagID ...
WITH 2 FALSE NEGATIVES
WITH 1 FALSE POSITIVES
CREATE EVENT COFFEE-BREAK ...

The composite event depends on four positive
RFID readings Iy, Is, Is, I4, and three negative
readings Jy, Ja, J3 (i.e., none of these readings is
allowed to exist). Clearly, given the high error rate

of RFID readings, our likelihood of computing the
composite event correctly is quite low. Instead we
allow the system to tolerate up to 2 false negatives
(i.e., two of the events Iy, Iy, I3, I, may be miss-
ing) and up to 1 false positives (i.e., one of the events
Ji, Ja, J3 may be present). We analyze the effect
of these clauses in Section 5.3.

4 PEEX Architecture

We have designed PEEX as a layer on top of a tra-
ditional RDBMS (we use Microsoft SQL Server [26]
in our implementation). This design enables us to
demonstrate the benefits of probabilistic RFID data
management, while leveraging all the features of an
existing database management system.

As illustrated in Figure 7, PEEX is comprised of
three modules: an Initializer, an Event Detector and
a Confidence Learner. The Initializer creates an en-
vironment for PEEX in the database. The Event De-
tector performs both event detection and generation.
The Confidence Learner populates confidence tables
from historical data. The current system also pro-
vides the user with a graphical user interface through
which to enter event definitions, to activate events,
to check the details of events and to run the system.
(See Figure 5).

In this section, we give a description of the main
functions of these modules.

4.1 Initializer

The initializer has two main functions. The first is
setting up an environment for PEEX in the database
and loading information about the existing environ-
ment from the database. The second function is
that of adding events and their descriptions to the
database. We describe each of these functions in more
detail.

The first time one runs PEEX, the system runs
a simple initialization process. The initialization
process creates an environment for PEEX in the
database. It creates tables which keep track of global
variables, such as the window size (i.e. the length of
the data window we process at each step) , the maxi-
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WHERE [SEQE1, 53, 551] AND
[51.officeid = Cooffice_id] AND
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53 office_ID = 51 office_id]
CREATE EVENT E_Meeting as E
SET E.office_id = 51 office_id;

E_ENTERED_OFFIC|
E_Left_Officedag_i
E_Left_Work{ag_i

E_Meeting@rfice_i
E_Encounter{perso
E_CoffeeEncounte|

<[] v

Add Event

Current max timestamp StreamClean has processed: 18013126

Learn Co... ‘ Adtivate ‘

Run StreamClean

Figure 5: PEEX’s graphical user interface. Con-
sists of two tabs. The first for querying about the
generated events. The second (shown) for learning
confidences, adding events, activating events and run-
ning the system either step by step or until a specified
timestamp.

mum timestamp we have processed thus far, and the
timestamps between which to learn the confidences
(i.e. the timestamps between which the training data
falls). It also creates a table, PEEXEvents, to keep
track of all events added to the system, their corre-
sponding confidence tables, and whether the event is
active.

After the first run of PEEX this initialization is no
longer executed. Instead, in every subsequent run of
PEEX, it loads information about the current state
of the system. This involves checking the values of
global variables, the events which are active in the
system and so on.

Perhaps the most important step in this loading
procedure is the construction of the Fvent Depen-
dency Graph (EDG). The EDG is a graph which rep-
resents the dependencies that exist between the cur-
rent event definitions. Each node is an event defini-
tion and an edge exists between two event definitions
FE{ and Es if Fy is a composite event derived from
E5 (or the non-existence of Es) and possibly other
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Coffee- In-Business
Encounter Meeting

Entered-Room Left-Room

Figure 6: An event dependency graph. Edges
exist between two nodes if there is a dependency.
For example, the In-Business-Meeting is depen-
dent on Entered-Room events and the non-existence
of Left-Room events.

events. PEEX must ensure that this EDG remains a
directed acyclic graph (DAG) at all times. It there-
fore checks before the addition of an event that no
cycles will be formed in the graph. If cycles are to be
created, it rejects the event. The EDG is later used
to determine in which order to generate events (see
Section 4.2). An example EDG is shown in Figure 6.

The second function of the Initializer is adding
events. The current system provides the user with a
graphical user interface through which to enter event
definitions. When a user enters a new event defini-
tion, the Initializer parses the definition, and checks
to see if the event causes cycles in the current EDG. If
no cycles are created in the current EDG, the Initial-
izer adds the event to the EDG, generates the SQL
for detecting and generating the event, and generates
the SQL for learning the confidences. It then adds
the event name, description and corresponding SQL
queries to the PEEXEvents table. Although the con-
version of the event definition to two different SQL
statements happens in the Initializer, we describe the
details of these procedures in Section 4.2 and Sec-
tion 4.3.
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4.2 Event Detector
4.2.1 Event Detection

All events (primitive and composite) are stored per-
sistently in the RFID Data Store, using one relation
per event type. Primitive events are inserted into
the store when they arrive. The Event Detector runs
periodically. Every time it runs, it checks if any new
events have occurred. For each newly detected event,
it inserts a new tuple into the appropriate relation.

The order in which event definitions are processed
is critical to the performance of the Event Detector.
If the events are not processed in the correct order,
the event generation has to be executed recursively
until no new events are generated. Therefore, PEEX
processes the event definitions in topological ordering
from the EDG. A topological ordering is one in which
if there is an edge (dependency) from node A to B
then A appears before B in the ordering. This en-
sures that when PEEX generates an event, this new
event will not cause any inconsistencies with previ-
ously generated events. An example of a topologi-
cal ordering for the EDG in Figure 6 is Encounter,
Entered-Room, Left-Room, Coffee-Encounter and
In-Business-Meeting.

To detect events, the Initializer transforms event
definitions into SQL queries that the Event Detector
then executes every time it runs. This translation is
done when the user first adds the event definition to
the system. Once the translation is completed, the
SQL query is stored in the database so as to avoid
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executing the conversion every time PEEX loads.

We begin the description of the conversion process
by explaining a simple conversion procedure. At the
end of this, we will clarify how our actual SQL con-
version differs from the described strategy.

This conversion operation requires three changes
to event definitions.

First, all negations that appear in the FORALL
clause are replaced with NOT EXISTS clauses. For
example, consider the following event definition from
Section 3.4.3 for the Entered-Room event.

FORALL SIGHTING Iy, SIGHTING ! I2, SIGHTING I3
WHERE SEQ(I1, Iz, I3)
AND I .tagID = I>.tagID AND I,.tagID = I3.tagID
AND I;.antID = ’ant10’ AND [3.antID = ’ant20’
CREATE EVENT ENTERED-ROOM E
SET FE .tagID = I;.taglD,

E .roomID = room555;

The definition specifies that event I3 should NOT
exist. It is translated into the following SQL query
(where Ay, ..., Aj are the values to which the at-

tributes of the event are set):

INSERT INTO ENTERED-ROOM (tagID, roomID, time)
SELECT I;.tagID, ’roomb55’, I3.time
FROM SIGHTING /7, SIGHTING I3
WHERE NOT EXISTS (

SELECT *

FROM SIGHTING Io

WHERE SEQ(Iy, I, I3) AND I;.tagID=I>.tagID )
AND SEQ([y,I3) AND I .tagID = Is.tagID
AND J; .antID = ’ant10’ AND [3.antID = ’ant20’

It is easy to see that the time it takes to run the
SQL depends heavily on the number of negations that
are involved in the event definition.

Second, all SEQ([1,I5,..) constructs are trans-
formed into explicit predicates on input event times-
tamps: i.e., I1.time < Is.time AND I.time < ....
This procedure is slightly complicated by negations
and AND constructs. During this procedure, PEEX
also determines the timestamp of the latest event.
If the SEQ operator imposes only a partial order
on the events, then this is simply the latest()
of all the timestamps. The latest() is a user-
defined scalar function, which chooses the highest
value across columns. This timestamp is then used
for setting the timestamp of the created composite
event.

This timestamp is also used for the final rewrite.
This rewrite is unrelated to the language, but has



to do with the continuous nature of the data and
event detection process. To avoid detecting the same
events every time it executes, the Event Detector
must transform event definitions into incremental
queries. PEEX achieves this by querying only for
combinations of low-level events where at least one
event occurred more recently than the Event Detec-
tor’s previous execution. PEEX uses the SEQ con-
struct and all predicates on event times to compute
the expected order of the low-level events. If these
events are totally ordered, PEEX constrains the last
event to occur within a recent time window by adding
to the event definition a predicate the form: I,,.time
> now() - A, where A is the period between con-
secutive executions of the Event Detector. If the
event definition imposes only a partial order on the
lower-level events, PEEX specifies that the maximum
timestamp of the events be within the most recent
time window.

Hence, PEEX requires that at least one lower-level
event for each new composite event occurs within
a recent time-window. Additionally, to maintain
its performance, PEEX requires that all lower-level
events occur within some bounded, though much
longer, time window. (e.g., the last week worth of
RFID readings). This constraint simply ensures that
the Event Detector always operates on a small data
set.

Even with the above simpler technique, the amount
of rewriting is non-trivial. Our current implementa-
tion restricts it by constraining event definitions to
at most one SEQ construct. Other restrictions include
that PEEX disallows consecutive negations in a se-
quence operator, and allows only one event type in
the THEN clause.

One of the significant restrictions of PEEX is re-
garding the addition of events which occured in the
past. We discuss this in Section 4.2.2.

The main differences between the described conver-
sion process and the implemented process is the way
in which negations are handled. Since it is under-
stood that NOT EXISTS clauses can cause severe per-
formance problems, we have decided to instead use
OUTER-JOINS. The NOT EXISTS clause can be sim-
ulated by a left outer join operation followed by a
selection of tuples whose right hand side (i.e. the at-
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tributes from the right table) consists of only nulls
(sometimes known as an anti-semi-join). The follow-
ing is what the current implementation produces for

the earlier example.
INSERT INTO ENTERED-ROOM (tagID, roomID, time)
SELECT I;.tagID, ’roomb55’, I3.time
FROM SIGHTING /; INNER JOIN SIGHTING I3 ON (
AND SEQ(Iy,I3) AND I;.tagID = I3.tagID
AND [; .antID = ’ant10’ AND [3.antID = ’ant20’)
LEFT OUTER JOIN SIGHTING I ON (
SEQ(Iy, Iz, I3) AND I;.tagID=I5.tagID)
WHERE J5.time IS NULL)

By executing the rewritten queries periodically,
PEEX extracts new events soon after they occur. For
each newly detected event, PEEX computes its prob-
ability using the approach presented in Section 3.4.2
and inserts it into the appropriate table.

4.2.2 Events in the Past

A significant challenge in managing and extracting
events is handling the addition or correction of past
events. The reason for this is that such additions can
leave the database in an inconsistent and incomplete
state. For example, if a past Entered-Room event
that occured at time 2 is added at time 10, a num-
ber of In-Business-Meeting events that should have
been captured may be missed due to the late inser-
tion. On the other hand, if a past Left-Room event
is added late, a number of In-Business-Meeting
events that should have been discarded are nonethe-
less included due to the late insertion.

One solution to this problem, is to rerun the event
extraction from time t every time a past event is in-
serted at time t. This strategy can have devastating
implications on the performance of the system.

The other extreme is to disallow the insertion of
past events completely. Although this solves our
problem, it eliminates many reasonable event defi-
nitions. This is especially the case since the time of
events are defined using normal distributions because
all events with a time variance of greater than 0 have
some probability to have occured in the past.

PEEX takes a more moderate approach. Firstly,
it allows the addition of events which have happened
within the current time window. More precisely, an
event is accepted if the probability that it occured
before the time window is less than e, an application



defined lower bound on probabilities. Such a restric-
tion prevents the two problems listed above because
we already ensure the order in which events are gener-
ated within a time window causes no inconsistencies
(by using the EDG).

The drawback of this approach is that if the time
window is only five seconds, we restrict the addition
of events to only the last five seconds. This provides
us almost no benefit in comparison to disallowing
past events completely if our time window is small.
However, a neat solution to this is to have several
processes running PEEX, each with a different time
window size.

For example, one instance can run PEEX with a
time window of five seconds providing the user with
real time information on events but low accuracy.
Another instance uses a time window of ten seconds
providing slightly higher accuracy. Another uses a
time window of one minute, of one hour and finally
of one day. Every time an instance of PEEX with
a larger time window finishes processing one window
of events, the past events from the instance with a
smaller time window can be discarded and replaced
with the more accurate events. This provides users
with a flexible tradeoff between latency and accu-
racy. Since we replace events generated by instances
with smaller time windows, at the end of the day, the
events captured are quite accurate.

This approach is not yet completely implemented
in the current prototype of PEEX. Currently, PEEX
allows events in the past but does not reprocess them
in order to correct or add new events.

4.3 Confidence Learner

To instruct the system to learn event confidences
using RFID data collected within a specified time-
range, the user issues the command: LEARN
[EventType]. At that time, the Confidence Learner,
learns or updates the confidence values for the given
type of event. Unless the global variables are explic-
itly changed, the time period for which the system
learns confidences is set once at the initialization of
the PEEX.

Since events are defined decoratively, the same
event definition can be used both for the event defini-
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tion and for learning. To learn confidences, the Con-
fidence Learner rewrites event definitions into queries
using the same algorithm as the Event Detector with
two exceptions. First, the queries need not be incre-
mental as they will process the whole training data
at once. Instead, they only restrict the timestamp of
the events to be within the training data time-range.

Second, the Confidence Learner actually needs to
extract two sets of events: all events that match the
definition and all events that match the definition
and also have a corresponding high-level event. The
ratio of the two sets, grouped by the appropriate at-
tributes, gives the desired confidence value. The Con-
fidence Learner uses a similar approach to compute
confidences for partial events. At the end, the Confi-
dence Learner updates the confidence tables.

The example in Figure 12 demonstrates the in-
tricacy of the SQL generated. It populates the
confidence tables for Entered-Room event. The
basic idea is that the temporary result A in the
query calculates the numerator for each set of
attributes whereas B calculates the denominator
value. Each only looks at the data between the
times specified for min-timestamp-training and
max-timestamp-training. The numerator is the
number of sets of events that match the definition and
have a corresponding high-level event, whereas the
denominator is simply the number of sets of events
which match the definition. For time attributes, since
the distribution function is always the normal distri-
bution, the Confidence Learner only needs to com-
pute the mean and the variance from the historical
data.

5 Evaluation

We evaluate our approach in two phases. In the first
phase we study the feasibility of using PEEX to de-
tect and generate events in near real-time. In the
second phase we evaluate and study the recall and
precision offered by PEEX in comparison to a deter-
ministic algorithm.
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5.1 Performance

In order to test PEEX and to study its feasibility we
generated synthetic data for a realistic scenario in an
office environment. In this section we first explain
the scenario, and the events that occur in the sce-
nario. This is followed by a description of the simple
measurements we made to study the feasibility of the
approach.

5.1.1 Testing Scenario

Our testing scenario consisted of two people named
Alice and Bob and their belongings. There are
four locations, ’Alice’s Office’, 'Bob’s Office’, ’Coffee
Room’ and the ’Exit’, and nine antennas. Figure 8
portrays the layout of the locations and antennas.

The scenario we imagine proceeds as follows. Alice
comes into work (through the Exit) with her purse,
followed by Bob with his backpack. During the first
few hours of the day, Bob comes to Alice’s office hop-
ing for a meeting, but each time he misses Alice who
goes to the coffee room each time he visits. Finally
when Alice discovers that Bob had visited her, she
visits his office with her notebook and they have their
first meeting for the day. The next meeting occurs
soon after in Alice’s office when Bob enters her office
with his notebook.

During the day, they each make trips to the coffee
room and even run into each other once. Later in the
day, they both visit each other’s office but miss each
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EVENT DESCRIPTION

SIGHTING Tag id X was sighted at antenna A (determin-

istic primitive event).

ENTERED-OFFICE X was sighted at antennas A and B (where A
and B are two adjacent antennas with B being

the nearest antenna to an office).

LEFT-0FFICE X was sighted at antennas A and B (where A
and B are two adjacent antennas with A being

the nearest antenna to an office).

LEFT-BUILDING X was sighted at antenna 3.2 then at 3.1 with

no sightings in between (deterministic event).

MEETING If X and Y are seen entering the same office
with their notebooks, with the first person not
leaving before the second person gets to the
office.

ENCOUNTER If X and Y are seen at the same antenna within

3 seconds of each other. Confidence table is

manually defined.

If X and Y ENCOUNTER each other and both have
their coffee mugs. Confidence table is manu-
ally defined.

COFFEE-ENCOUNTER

Table 1: Test scenario events.

other. Finally, near the end of the day, Alice visits
Bob’s office with her notebook. They are both in
the office with their notebooks, however, they do not
have a meeting. They spend fifteen minutes together
and Alice leaves the building. Later, Bob leaves the
building.

The events we consider are listed in Table 1. For
the training data, the first six types of events are gen-
erated. For the testing data, only Sighting events
are generated and the rest are detected and gener-
ated by PEEX. Therefore, confidence tables can be
learned for the second event through to the sixth
event. The confidence tables for Encounter and
Coffee-Encounter events are populated manually.

5.1.2 Measurements and Results

We tested and made measurements on the test data
generated for our example scenario above. The
Sightings table we worked on had about four hun-
dred tuples.

In order to study the feasibility of our approach
we measure the time it takes to detect and gener-
ate the events. Listed under the second column in
Table 2 are the times it takes to execute the SQL
update statements which populate the corresponding
confidence table for each event definition. This table
includes all those events from our example scenario
which do not have their confidence table populating
manually.



EVENT Conf SQL Event SQL Event SQL
for all for window
ENTERED-OFFICE 663 ms 227 ms 15.2 ms
LEFT-0FFICE 702 ms 197 ms 10.2 ms
LEFT-BUILDING | 19 ms 3 ms 2 ms
MEETING 35 ms 58 ms 11 ms

Table 2: Times to execute various SQL statements
generated by PEEX.

It is important to note that these times do not
include the compile and parse times of the gener-
ated SQL. Although these have significant costs the
first time the query is run, this time decreases signif-
icantly, usually to 1 ms, in subsequent executions. It
becomes clear from this table that the running time
of the SQL generated depends heavily on the size
of the tables involved. For example, since there are
many, fifty-six times, more Entered-Office events
than Meeting events, the time for populating the
Entered-0ffice event’s confidence table is much,
eighteen times, greater than the time for populating
the Meeting event’s confidence table.

The more important measurement, however, is the
time it takes to detect and generate composite events.
This query, unlike the confidence table query, is ex-
ecuted at every time window. Therefore, execution
time is more critical. In our experiments we first mea-
sured the average time to execute the event SQL over
all the data (i.e. without any restrictions on the time
of the lower level events) and also the event SQL over
one time windows. In Table 2, the third and fourth
columns show the results of these measurements. The
time window size we used was 5000 ms and the time
given in the fourth column is the average over ten
runs of the event SQL over ten consequent time win-
dows.

In order to understand what the above results im-
ply in a large scale system, we estimate the time these
event SQL statements would take to execute over a
larger Sighting table. Let’s consider a deployment
with fifty antennas and 500 tags. Let’s assume that
each tag is sighted with probability 0.5 and that the
read rate for the antennas is one read per second.
Now, across a 5000 ms time window, we would ex-
pect a total of 2500 Sighting events. In our current
testing scenario, it takes a total of 485 ms to process
a Sighting table of only about 400 tuples. Assuming
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that there is a linear scale up, it would take 3031.25
ms to process one time window of size 5000 ms in our
assume deployment. Under these assumptions, our
approach is feasible for a moderate-scale deployment
of fifty readers and 500 tags.

5.2 Effectiveness

In this section, we evaluate the effectiveness and ac-
curacy of PEEX through a series of experiments on
real RFID traces collected on a small antenna deploy-
ment (on one floor of our building).

For these experiments, we collected data as a per-
son named Alice who carried a personal RFID tag
and also tagged her keys and her purse. In our
setup, Alice leaves the building only to go to class
(without her purse most of the time), go to lunch
(with her purse), or go home (with her purse as
well). We made Alice leave the building 20 times,
carrying different belonging with her. Hence, we gen-
erated 12 LEFT-FOR-CLASS, 2 LEFT-FOR-LUNCH, and
6 LEFT-FOR-HOME events. These events comprise 41
LEFT-THE-BUILDING events: 20 for Alice, 13 for her
keys and 8 for her purse.

Table 3 summarizes the constraints and event def-
initions that we use in the evaluation. We use con-
straints in these experiments, as we believe that the
complete PEEX system will have the functionality
to handle such constraints. Integrity constraints are
further explained in [25].

For each constraint and each event, we indicate
both its real confidence (i.e., the fraction of time
that it held true) and the confidence computed by
the Confidence Learner*. The confidences learned
are sensitive to the quality of the data. For exam-
ple, although the confidences learned for the last two
constraints are reasonably close to the true confi-
dence, the learned confidence for the Containment
constraint is more than 10 times smaller than the
true confidence. The explanation for this, however,
is simple. The tag on the purse is an old, worn out
tag, and was hardly sighted (only 11 times out of
the true 56 times). Due to the lack of evidence, the
confidence of the constraint remained low.

4We used half of our traces for confidence learning and half
for the actual event detection and data cleaning.



EVENT DESCRIPTION

rate of 54%). Without allowing any false negatives

SIGHTING
istic primitive event).

Tag id X was sighted at antenna A (determin-

recall is below 25%. By allowing k& = 1 false nega-

WALK-IN-HALLWAY X was sighted at antenna 3.1, 3.2, 3.3, and 3

in sequence (deterministic event).

4

tives, recall increases to over 50%, and continues to

LEFT-THE-BUILDING
no sightings in between (deterministic event

X was sighted at antenna 3.2 then at 3.1 with

).

increase with k.
As a comparison, we compute the theoretical detec-

LEFT-FOR-LUNCH
approximately the same time.

X and X’s purse are leaving the building at

tion rates for different error rates. For k < n, where

CONSTRAINT| DESCRIPTION

n is the number of raw events that compose the com-

Containment If X is sighted at antenna A and X is usually . . n n\ n—1
contained in Y, then Y must also be sighted pleX event, recall is given by p"+ (1)]9 (1 - p) +
éta‘}tl antinna A. For e;cainpll;s, if keystar;:{mglhted, o+ (Z)pn_k(l _ p)k where p = (1 — error rate).
en € purse must also be present. eal con- .
fidence: 0.46. Learned confidence: 0.04 The results show that tolerating even one false neg-
Pairs It 'Eia% ?tharC)zi_ghtC_d} f:tdanicnn? A m%c?ﬁcrv ative increases recall by 25% or more depending on
an ater tag 1S sighte at antenna en .
tag Y must also be sighted there. For exam- €IrTOr rate, event doubling recall once error rates ex-
ple, if Alice is walking with her purse, and ceed 25%
later the purse is sighted, the Alice should be . .. .
there too. Real confidence: 0.98. Learned con-  Allowing false positives rather than false negatives
fidence: 0.69 in event detection similarly improves performance
InBetween If X is sighted at antenna A and later at an-

0.7

Table 3: Experimental events and constraints.

In the rest of this section, we present three sets
of experiments. First, we look at event extraction
from raw data and show the benefits of using partial
events. Second, we look at using constraints to clean
raw data, comparing deterministic and probabilistic
cleaning. Finally, we evaluate the combined bene-
fits of probabilistic cleaning and probabilistic event
extractions.

5.3 Detecting Partial Events

In this section, we study event detection performance
when high-level events are extracted directly from
dirty, raw data. We show how the WITH m FALSE
NEGATIVE/POSITIVE clauses improve detection rates.

We define recall as the number of detected events
divided by the total number of events. We measure
recall for the deterministic WALK-IN-HALLWAY event
using both deterministic and probabilistic extraction.
For the latter, we include a WITH k FALSE NEGATIVE
clause in the event definition, with k varying from 1
to 3. Figure 9 presents the results. The curve la-
beled “54%” corresponds to our experimental data
(because we observed an approximate overall error-

tenna C then X must also be sighted at an-
tenna B (if A is adjacent to B which is adjacent
to C). Real confidence: 1. Learned confidence:
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but for events that require the non-occurrence of
some tag reads. We omit these results due to lack
of space.

The increased recall comes at the expense of
precision, defined as the number of correctly de-
tected events over all detected events. As an ex-
treme example, a single sighting of a person by
the elevator would match a large number of events:
LEFT-THE-BUILDING, GOT-COFFEE, GOT-MAIL event,
etc., but only one of these events would be correct.
The precision depends on the level of ambiguity in the
data; precision is worse when more events are simi-
lar. For example, if three out of four tag readings
in our experiment were shared between two events,
and both events occurred with the same probability,
the precision of event detection with 1 false negative
would have been 87.5%. However, in this case, PEEX
would have used the historical confidence and would
have labeled detected events with a 0.5 probability,
signaling to the application the uncertainty of these
events.

Key finding: Given the unreliable nature of
RFID, PEEX must allow at least a small number of
false negatives and false positives during event detec-
tion to achieve usable success rates, even if doing so
decreases event detection precision.

5.4 Cleaning

In this section, we evaluate the performance of de-
terministic and probabilistic data cleaning based on
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perimental results shown with 54% error-rate curve.
Other results are analytical.

integrity constraints. We apply the cleaning to the
primitive, deterministic events from the SIGHTING ta-
ble.

We first measure the recall and precision of the
raw data. Our experiment includes 281 events where
a taglD should have been sighted by an antenna. In
the SIGHTING table, however, some events are miss-
ing and some events appear as bursts of RFID tag
reads. We thus compute recall as follows. Every time
a correct tag reading is produced within 2.5 seconds
of a true event, we consider the event to have been
successfully recorded. We use a 2.5 second bound
because, although we know exactly how many real
events occurred, and in what order, we must approx-
imate the exact time when missing events occurred.
The raw data has a recall of only 0.452.

To measure precision, we consider as false positives
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all tag readings that occur at least 2.5 seconds away
from a real event which shares the same tagID and
antID values. Because antennas produce large num-
bers of tag reads in short periods of time, we com-
pute one false positive per antenna, per taglD, and
per burst of tag reads. We approximate a burst of
tag reads with a 5 second time-window. This win-
dow size captures well the bursts of readings in our
experiments. The raw data had a precision of 1. As
we show below, cleaning can add false positives.

To compare deterministic and probabilistic data
cleaning, we measure the recall and precision they
achieve. For probabilistic cleaning, we compute these
values separately for events with probabilities above
different thresholds. We focus on the Containment
constraint. For thresholds 1, 0.75, 0.5, 0.25 and 0,
the resulting recall values were 0.45, 0.45, 0.52, 0.55,
and 0.63 respectively. The precision values were 0.93,



0.74, 0.75, 0.63 and 0.6.

Under deterministic cleaning, we assume that all
constraints are always valid. Deterministic cleaning
thus aggressively adds tuples resulting in the same
post-cleaning recall as the probabilistic technique for
events with probability > 0. A more conservative
strategy would be to only apply deterministic con-
straints. In that case, the recall would be equal to
that of probabilistic events with probability 1.0. The
deterministic approach thus offers a binary trade-off:
favor recall or precision. In contrast, the probabilistic
approach offers a finer-grain trade-off in the form of
a threshold on event probabilities. For example, let-
ting the threshold drop from 1.0 to 0.25 (after clean-
ing with the Containment constraint) improves the
recall from 0.45 to 0.55, but drops the precision from
0.93 to 0.63.

Interestingly, for the Containment constraint,
probabilistic cleaning (recall of 0.63) outperforms
deterministic cleaning (recall of 0.53). Indeed, for
the deterministic constraint, we simply indicated,
through a helper table, that ’keys’ were contained in a
'purse’. For the probabilistic technique, we specified
a generic Containment constraint for any pair of ob-
jects, expecting the Confidence Learner to find the
purse-keys relationship. Instead, the learner found
several other such containment relationships, com-
puted their confidences from history, and used them
to improve recall.

Finally, Figure 10 shows the impact of constraint
ordering on recall. In this experiment, each con-
straint cleans the data already cleaned by another.
The results show recall for events with probability
> 0.5. Applying multiple constraints improves re-
call but the values depend on constraint order. This
problem affects both deterministic and probabilistic
cleaning. Currently, PEEX applies constraints in the
order in which they have been defined.

Key finding: Deterministic data cleaning must
always ignore or always apply constraints, leading to
either bad recall or bad precision. In contrast, prob-
abilistic constraints enable applications to choose
their preferred trade-off between these two important
properties.
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5.5 Detecting Events over Cleaned
Data

Finally, we study the performance of composite
LEFT-THE-BUILDING event detection from cleaned
data. Once again, we compare the deterministic and
probabilistic approaches.

For the probabilistic approach, we extract events
without tolerating false negatives and false positives
(i.e., no WITH FALSE POSITIVE/NEGATIVE clauses)
to show the effects of data cleaning and event am-
biguity.

Figure 11(a), shows the recall of the high-level
events after the raw data has been cleaned by
each constraints individually. The recall after the
Containment constraint shows, as expected, that a
lower threshold implies a higher recall; as we decrease
the threshold we include events with lower probabil-
ity in addition to the previously counted events.

More interestingly, contrary to the results from
Section 5.4, the recall after deterministic cleaning
is not equal to the recall after probabilistic clean-
ing with threshold 0; it is lower. The reason is
that we are not looking at primitive events but at
the composite LEFT-THE-BUILDING event which cor-
responds to pairs of sightings with no sightings in be-
tween. This means that the event is non-monotonic
and therefore, if the Containment constraint causes
tuples to be inserted in the wrong place or time,
this may actually cause some LEFT-THE-BUILDING
events to not be detected. However, with probabilis-
tic cleaning and probabilistic event detection, since
we insert tuples with probability usually less than 1,
the events are still detected but with lower proba-
bilities. The contention between the non-monotonic
LEFT-THE-BUILDING event and deterministic clean-
ing is also exemplified in the InBetweeen constraint
which actually lowers the recall to 0.39. Hence, deter-
ministic cleaning can sometimes lower recall of com-
plex events.

Figure 11(b) shows the recall increase, as we incre-
mentally clean the data with one constraint followed
by another. This effect is similar to the effect we mea-
sured for raw data cleaning. An interesting anomaly,
however, is that the deterministic InBetween con-
straint actually worsens the recall. This is again due



to the non-monotonicity of the LEFT-THE-BUILDING
event.

Figure 11(c) shows precision results. For deter-
ministic cleaning, the precision depends only on how
often the constraint holds in practice because deter-
ministic cleaning always applies the constraint. If
the constraint always holds, the precision is one, but
if the constraint holds only a fraction of the time, the
precision goes down accordingly. In contrast, data
precision with probabilistic-constraint cleaning also
depends on the training data that was used to popu-
late the confidence tables. The precision then drops
for events with increasingly lower probabilities. Be-
cause these probabilities are visible to applications,
however, the latter can choose their preferred trade-
off between precision and recall. For example, an
application can achieve a recall of 0.63 with precision
0.79 by ignoring events with less than 0.75 probabil-
ity. The resulting precision is only 0.02 lower than
the precision offered by deterministic cleaning which
offers a recall of only 0.51.

Key finding: Because both event-detection con-
fidence and constraint confidence affect the proba-
bility of an event, PEEX offers a flexible trade-off
between recall and precision. If an application exam-
ines high-probability events only, it gets high preci-
sion but lower recall. By lowering the threshold, an
application can improve the desired recall at the ex-
pense of precision. These probabilities capture both
the uncertainty due to event ambiguity and the un-
certainty due to data errors.

6 Related Work

RFID data management. Several techniques
have recently been proposed for compactly repre-
senting, summarizing, and efficiently accessing RFID
data [19, 21]. These techniques, however, do not per-
form any event detection. They only focus on infor-
mation aggregation and compact data representation.

Event detection. There exists a rich litera-
ture on event detection and event processing sys-
tems. Active databases support the specification of
event-condition-action rules [27], with sophisticated
event definitions [1, 6, 18], Publish-subscribe systems
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have started to propose stateful and expressive lan-
guages [12, 24]. Recent efforts are investigating ex-
tracting complex events specifically from sensor and
RFID data [31, 34, 39]. All these systems, however,
are deterministic: they ignore event ambiguity and
possible input data errors during event extraction.

The Data Furnace project at Berkeley [17] has sim-
ilar goals to ours, but is investigating a complemen-
tary approach to the problem. Unlike our approach,
the Data Furnace project envisions using statistical
learning techniques to build, maintain, and run infer-
ences over probabilistic models that capture correla-
tions across primitive events.

Sensor and RFID data cleaning. Several tech-
niques have recently been proposed for RFID and
sensor data cleaning. The Extensible Sensor stream
Processing (ESP) framework [22], part of the HiFi
project [16] allows a user to specify, in the form of
declarative queries, the sequence of algorithms that
the system should use to clean the data. Similarly,
Rao et al. [29] enable users to specify combinations
of patterns over RFID data streams and matching
cleaning actions that either delete or keep some of the
data. These approaches work well in many scenarios
where the user can predict the types of errors that
will occur and the appropriate algorithms to correct
them, and errors can be cleaned deterministically.
More recently, Khoussainova et al. [25] proposed to
use integrity constraints and a probabilistic model
to clean sensor data. Their scheme generates missing
tuples and uses entropy maximization to assign prob-
abilities to tuples. PEEX is based on similar princi-
ples: it uses integrity constraints to clean the data
and a probabilistic data model. Our approach, how-
ever, is much more sophisticated: PEEX supports ex-
tracting high-level probabilistic events from low-level
data and can interleave event extraction and cleaning
steps; PEEX also exploits history to clean the data
more accurately.

Earlier work has also proposed simple low-level
cleaning mechanisms that average measurements
within a short time-window [23] and across a group
of sensors covering the same area [22]. PEEX could
leverage these techniques.

Chawathe et al. [7] propose to perform various in-
ferences on RFID data to recover from input data



errors. The envisioned techniques, however, are spe-
cific to the supply-chain management domain. In our
system, such specific rules could be represented with
integrity constraints.

Deshpande et al., [13, 14] propose to handle in-
put errors and inaccuracies by building a probabilis-
tic model of the spatial and temporal correlations
between values produced by different sensors. The
model then serves to produce approximate answers to
queries, predict missing values, and identify outliers.
The main challenge of the approach lies in select-
ing, building, and maintaining appropriate models.
The proposed models are also inappropriate for RFID
data where events correspond to combinations of ob-
servations with specific order and time constraints.

Probabilistic databases. Probabilistic
databases have a long history and have mostly
focused on the data model and query evaluation
approaches. The data model we use for probabilistic
composite events corresponds closely to Barbara et
al., [3]. Other researchers too have recently used
variations on this model. Widom [38] calls tuples
with probability < 1 may-be tuples, and alternative
tuples or-tuples; Green and Tannen [20] call this
model pc-tables, while Dalvi et al., [8] call them dis-
joint or independent tuples. The complexity of query
evaluation has been shown in [9] to be #P-hard
for queries with duplicate elimination: our queries
(e.g. used in the definition of composite events)
do not perform duplicate elimination. Probabilistic
temporal databases have been introduced in [11] but
they use a semantics based on probability intervals,
which is different from ours.

Bertossi and Chomicki [4] describe a framework
in which queries can be answered over inconsistent
databases: the database violates some integrity con-
straints, but the user still wants to evaluate queries
over the database. Andritsos et al., [2] extend this ap-
proach to a probabilistic framework, in which the re-
pairing tuples are associated some probabilities. Our
approach follows this line of research, in that the
RFID data can be viewed as a database violating the
constraints given by the users, but our constraints are
much more complex than [2] (which only consider key
constraints), and have confidences.
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7 Conclusion

RFID data enables a new class of applications, but
requires the management of often erroneous data and
ambiguously defined high-level events. In this paper,
we presented an approach that uses a probabilistic
model to cope with input data errors and event ambi-
guities. The approach also applies probabilistic con-
straints to improve data quality.

We presented PEEX, an implementation of our
approach, and several experimental results showing
that PEEX offers a high recall for both low-level and
high-level events, outperforming deterministic tech-
niques. We showed that PEEX performs at its best
when using both probabilistic cleaning and proba-
bilistic event detection. Improved event recall comes
at the expense of precision, but PEEX provides appli-
cations a flexible trade-off between these two impor-
tant properties. With PEEX, applications can simply
ignore events with a probability below their desired
threshold.

The work presented in this paper also presents
many challenges that we are currently addressing or
planning to address. The first challenge is that of
handling constraints. Since integrity constraints pro-
vide a wealth of information regarding the dependen-
cies between events, it would be of great benefit to
include such capabilities into an RFID data manage-
ment system. Two distinct ideas we have on handling
integrity constraints lie in either using constraints to
clean data prior to generating events or in taking into
consideration the integrity constraints when answer-
ing queries over the data. The implications of the
two directions are not clear and this challenge de-
serves much attention.

Another direction for future work is to extend
PEEX to handle other probability distributions for
continuous attributes such as the uniform, Zipf and
other common distributions. This requires an un-
derstanding of how to manipulate these distributions
both within one type of distribution and across dif-
ferent types of distributions.

Other issues that we plan to investigate are
the drawbacks of the independence assumptions we
make, the feasibility of our approach on a large-
scale deployment, the issues pertaining to privacy,



the challenges of integrating PEEX with a stream
processing engine and extending a stream processing
engine to handle probabilistic data.

Our vision is a unified framework for managing and
maintaining RFID data effectively. We hope for a
framework that can be used by a plethora of applica-
tions, each extracting its events either from raw data
or from other abstract events, previously defined by
this application or even by other related applications.
We view the work in this paper as a critical step to-
wards achieving this vision.
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SELECT X1.antl, Xi.ant2, E. roomID, avg(E.time_mean - X1.time_mean) as timediff,
var(E.time_mean - X1.time_mean), count(X1.time_mean) as count
FROM Entered-Room E JOIN
(SELECT DISTINCT Si.antID as antl, S3.antID as ant2,
S1.tagID AS S1_tagID, S3.time_mean AS time_mean
FROM Sighting S1 JOIN Sighting S3 ON
( S1.tagID = S3.tagID AND Si.antID <> S3.antID AND
S1.time_mean<=S3.time_mean)
LEFT OUTER JOIN Sighting S2 ON
( S2.tagID = Si.tagID AND S1i.time_mean<S2.time_mean
AND S2.time_mean < S3.time_mean
WHERE (S2.prob IS NULL OR S2.prob < 1.0) AND (S3.time_mean <=
(select curValue
from StreamCleanVariables
where varName
AND S3.time_mean>=

’’max_timestamp_training’’)
(select curValue

from StreamCleanVariables

where varName = ’’min_timestamp_training’’) +

(select curValue

from StreamCleanVariables

where varName =

> ’window_size’’))
) as X1

ON ( E.tagID = X1.S1_tagID AND X1.time_mean<= E.time_mean)
LEFT OUTER JOIN
(SELECT DISTINCT Si.antID as antl, S3.antID as ant2,
S1.tagID AS S1_tagID, S3.time mean AS time_mean

FROM Sighting S1 JOIN Sighting S3 ON

( S1.tagID = S3.tagID AND Si.antID <> S3.antID AND
S1.time_mean<=S3.time_mean)
LEFT OUTER JOIN Sighting S2 ON

( s2.tagID = S1.tagID AND S1.time_mean<S2.time_mean AND
S2.time_mean < S3.time_mean)

WHERE (S2.prob IS NULL OR S2.prob < 1.0) AND (S3.time_mean<=
(select curValue
from StreamCleanVariables
where varName = ’’max_timestamp_training’’)
AND S3.time_mean>= (select curValue
from StreamCleanVariables
where varName = ’’min_timestamp_training’’) +
(select curValue
from StreamCleanVariables
where varName = ’’window_size’’))) as X2
(X2.time_mean > X1.time_mean AND X2.time_mean <=E.time_mean
AND X1. S1_tagID = X2.S1_tagID)
LEFT OUTER JOIN Entered-Room X_E
ON (X_E.time_mean <E.time_mean AND X_E.time_mean > X1.time_mean
AND X_E.tagID=E.tagID)
WHERE X2.time_mean is null AND X_E.time_mean IS NULL
GROUP BY X1.antl, Xl.ant2, E . roomID) A,
(SELECT Si1.antID as antl, S3.antID as ant2, count(S3.time_mean) as count
FROM Sighting S1 JOIN Sighting S3 ON

oN

( S1.tagID = S3.tagID AND Si.antID <> S3.antID AND S1.time_mean<=S3.time_mean)
LEFT OUTER JOIN Sighting S2 ON

( S2.tagID = S1.tagID AND S1.time_mean<S2.time_mean AND S2.time_mean < S3.time_mean)
WHERE (S2.prob IS NULL OR S2.prob < 1.0) AND (S3.time_mean<=
(select curValue

from StreamCleanVariables
where varName = ’’max_timestamp_training’’)
AND S3.time_mean>= (select curValue
from StreamCleanVariables
where varName =
(select curValue
from StreamCleanVariables
where varName = ’’window_size’’))

GROUP BY S1 . antID, S3 . antID) B
WHERE A. antl = B. antl AND A. ant2 = B. ant2;

’’min_timestamp_training’’) +

Figure 12: SQL query for populating the

confidence
table for the ENTERED-ROOM event.
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