
Probabilistic Event Extraction from RFID Data

Nodira Khoussainova, Magdalena Balazinska, Dan Suciu

Computer Science & Engineering Department, University of Washington

Seattle, Washington, USA
nodira, magda, suciu@cs.washington.edu

Abstract— We present PEEX, a system that enables applica-
tions to define and extract meaningful probabilistic high-level
events from RFID data. PEEX effectively copes with errors in
the data and the inherent ambiguity of event extraction.

I. INTRODUCTION

The success of Radio Frequency Identification technology

in industrial settings is leading many to consider pervasive

deployments of the technology, where objects and people carry

tags and RFID readers are scattered through the environment.

RFID holds the promise of enabling many user-oriented ap-

plications from asset tracking [11] and alerting services [1],

to sophisticated elder-care applications [9].

Exploiting RFID data presents significant challenges. RFID

readers produce streams of low-level events of the form: “Tag

3 was seen at antenna 64 at 15:20”. This low-level data must be

transformed into high-level events meaningful to applications,

such as “Alice entered the conference room at 15:20”, or

“Alice left her keys in her office”. Two issues make this

transformation challenging. The first issue is reliability [3],

[5], [13]. RFID antennas frequently fail to read tags in their

vicinity, causing complex events to go undetected. The second

issue is ambiguity. Detecting a person at a sequence of

locations may indicate that they are performing one of several

activities: e.g., Bob is printing a paper or sending a fax.

Ambiguity can make it difficult to determine which from a

set of high-level events actually occurred.

Previous work on RFID event detection ignores ambigu-

ity and reliability issues [15]. These issues, however, make

deterministic event detection unworkable, leading to event

recalls near zero [8]. Schemes that do consider data errors

deterministically clean the data [5], [6], [10], [12]. Such

cleaning can improve data quality, but cannot always clean all

errors. For example, if a laptop appears to be in two offices

simultaneously, it is not always clear which location is correct.

Given the limitations of the deterministic cleaning and event

detection techniques, we propose to use a probabilistic model

to enable complex event extraction in face of uncertainty. Our

contributions are (1) an event language (PeexL) for defining

probabilistic events, (2) a technique for extracting events using

confidence tables and partial events for handling ambiguity

and reliability issues respectively, (3) an implementation of

the approach in a system called Probabilistic Event EXtractor

(PEEX), a middleware layer on top of a relational database

management system (RDBMS), and (4) an evaluation of PEEX

through experiments with data collected from our building-

wide RFID deployment. We have deployed 150 RFID antennas

Office

Reader

Antenna

RFID Antenna RFID Antenna

Duplicate
Readings

Missed
Reading

RFID Tag

(a) Sample deployment (b) Types of errors

Fig. 1. RFID deployment and errors

in all hallways of our building (Figure 1(a)). Antennas are

polled continuously and tag sighting events are sent to a back-

end database. Our deployment enables users to track personal

belongings and friends’ activities in the building.

Since PEEX is based on an RDBMS and the output it

produces follows standard probabilistic models, existing prob-

abilistic DBMSs [2], [14] could be used to further manage and

query extracted events. This paper only addresses the actual

event extraction from RFID data.

II. PROBABILISTIC EVENT EXTRACTION

In this section, we describe PeexL and our techniques for

handling ambiguity and data errors.

A. Events

Due to the uncertainty caused by data errors (as illustrated

in Figure 1(b)) and ambiguity, events are probabilistic rather

than deterministic in nature. PEEX uses the probabilistic data

model described in [2], [4], [14] and represents probabilistic

events as tuples stored in relations named for each event type.

The most important relation is SIGHTING, which has the

following schema: SIGHTING(time, tagID, antID, prob). An

example tuple in SIGHTING is (101, 10, 23, 1.0), which

indicates that at time 101, the tag with id 10 was seen by

antenna 23. All tuples in SIGHTING are deterministic (i.e.,

have probability 1), because a tuple records the fact that the

system is aware of this sensor reading.

An example of a higher-level event is a MEETING event

with schema: MEETING(time, person1, person2, room, prob).

An example tuple is (103, ’Alice’, ’Bob’, 435, 0.4), which

represents that at time 103, PEEX believes that Alice and Bob

are having a meeting in 435 with probability 0.4.

Uncertainty propagates as events are aggregated into higher-

level events. e.g., if there is limited confidence in underlying

ENTERED-ROOM events, the confidence in a MEETING event will be

accordingly lower.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

FORALL SIGHTING S1, !SIGHTING S, SIGHTING S2

CTABLE FLOOR5-STATS C

WHERE SEQ(S1, S, S2)

AND S1.antID = ’ant035’ AND S2.antID = ’ant036’

AND S1.tagID = S2.tagID AND S.tagID = S1.tagID

AND S1.tagID = C.tagID

CREATE EVENT ENTERED-ROOM E

SET E.tagID = S1.tagID,

E.room = C.room

Fig. 2. Example of event specification in PeexL

B. PeexL - Event Language

Users define complex probabilistic events from SIGHTING

or other previously defined events using PeexL, the declarative

query language for PEEX. PeexL queries take the form:
FORALL I1, I2, ..., In

[CTABLE C]
WHERE Condition

CREATE EVENT E

SET Assignments

The arguments of the FORALL clause, I1, . . ., In, correspond

to primitive or other composite events, or to regular database

tables and may be preceded by a negation !. The CTABLE

clause specifies the confidence table and serves to handle

event ambiguity (see Section II-C). The WHERE clause is as in

SQL. Finally, E and the SET clause define the name and the

attributes of the new event. Figure 2 illustrates a PeexL query

that generates an ENTERED-ROOM event for any tag X (given by

S1.tagID) and some room R if X is seen at antenna 35 followed

by 36 with no sightings in between. The ! preceding S indicates

that event S should NOT exist. R and the probability assigned to

the event are computed using the confidence table FLOOR5-STATS

as we discuss next.

C. Confidence Tables

A given combination of RFID tag-reads defines a composite

event only with limited certainty. Such event confidences often

depend on different attributes of the event: e.g., the owner of

office 501 is more likely than others to enter room 501 than the

adjacent conference room 555. To specify such correlations,

PEEX uses confidence tables that take the form: CTABLE(A1,

A2, ..., An, conf) and are populated from labeled historical

data. Figure 2 illustrates the approach for ENTERED-ROOM events.

The confidence value is computed from a FLOOR5-STATS confi-

dence table, which appears in the WHERE clause. The schema of

FLOOR5-STATS is simply (tagID, room, conf). An example of a

tuple in FLOOR5-STATS is (3, 501, 0.9), which indicates that if

tag 3 is seen at antenna 35 followed by 36, then there is 0.9

probability that it enters room 501.

D. Partial Events

RFID errors dramatically impact event detection, because

error rates are amplified at each level in the event hierarchy.

To illustrate, imagine that a user defines the ENTERED-ROOM event

with five underlying tag-read events. If each tag-read event has

an error rate of 15%, the ENTERED-ROOM event has an error rate of

56%. If three ENTERED-ROOM events are now needed to detect a

MEETING, the latter has an error rate of 91%! Deterministic event

detection is thus unworkable in an error-prone environment.

It is often possible, however, to detect composite events

even when some errors occur. For example, if only two out

Fig. 3. PEEX software architecture

of five tag-read events are detected, the system may still

conclude that an ENTERED-ROOM event occurred, although with

lower confidence. PEEX captures this intuition through the

use of partial events. Given a definition of a composite event

consisting of n lower-level events (some may be negated),

PEEX detects the composite event as soon as some non-empty

subset of the n events occur (or do not occur). In our example,

PEEX detects the ENTERED-ROOM event as soon as at least one

tag-read event occurs. Of course, the more errors occur, the

lower the confidence that the high-level event occurs.

III. PEEX SYSTEM

PEEX is a layer on top of a traditional RDBMS. This

design enables us to demonstrate the benefits of probabilistic

event extraction, while leveraging the features of an existing

RDBMS. As illustrated in Figure 3, PEEX comprises an Event

Detector, a Confidence Learner and a Partial Events Generator.

A. Event Detector

The Event Detector extracts events specified by the event

definitions. All primitive and composite events are stored

persistently in the RFID Data Store with one relation per event

type. Primitive events are inserted into the store as they arrive.

To leverage the underlying DBMS, the Event Detector trans-

forms PeexL event definitions into incremental SQL queries

that it executes each time it runs. The interval between Event

Detector executions is set by the administrator (e.g., every 5

seconds). For each newly detected event, the Event Detector

inserts a tuple into the appropriate relation and computes its

probability using the corresponding confidence table. To avoid

the proliferation of very low-probability events, PEEX drops

events that have a confidence lower than some ǫ threshold

defined by the administrator.

The probability assigned to a composite event is the product

of the probabilities assigned to its underlying events and the

corresponding value in the confidence table. For example, if

a MEETING event is defined as two people entering a room

(i.e., two ENTERED-ROOM events), then the probability assigned

to a particular MEETING is the probability that both ENTERED-ROOM

events occur (which are obtained from the ENTERED-ROOM table),

times the conditional probability that a MEETING occurs given

that both ENTERED-ROOM events happened (which is obtained

from the confidence table). In order to detect correlations

between composite events, PEEX recursively inlines their

definitions until all events in the query are independent; see

[8] for more details.

2

B. Confidence Learner

To automatically populate confidence tables, PEEX uses

annotated historical data that includes primitive events and

labeled composite events. The confidence for an event is then

determined by two sets: the set of historical composite events

that match the event definition and the subset of those events

that are also associated with the appropriate label. The ratio

of the two sets, grouped by the appropriate attributes gives

the confidence value for the event. We refer the reader to our

technical report [8] for more details.

C. Partial Event Generator

To detect partial events, PEEX relies on the Partial Event

Generator. Given an event definition that depends on lower

level events E1, E2, ..., En, the Partial Event Generator gener-

ates a partial event for each subset of events with at least one

positive event Ei and no consecutive negated events Ej , Ej+1.

The Partial Event Generator adds each partial event to the

system and from there on, these events are handled like regular

events, each with its own confidence table.

IV. EVALUATION

To evaluate PEEX, we collected data for one hour with

ten participants in our building-wide RFID deployment. Each

participant was given several tags (e.g., person, keys, laptop,

mug), a schedule of meetings and lunch breaks, and was

told to take coffee breaks and trips to the printer at their

discretion. We collected 11585 SIGHTING events. We extracted

several higher-level events including entered-room, coffee and

meeting events. The Event Detector ran every 5 seconds. Each

participant labeled their activities with timestamps during the

collection period. We used half the data for populating the

confidence tables and the other half for evaluating PEEX.

We measure recall/precision of the extracted ENTERED-ROOM

events at different probability thresholds meaning that only

events above the threshold are considered. Deterministic tech-

niques are equivalent to setting the probability threshold to 1

(extracting only certain events) or 0 (extracting any event that

has any chance of occurring). Clearly, PEEX can provide a

higher recall than the first deterministic approach, from less

than 1% to 60% (with threshold 0.05) and can deliver a higher

precision than the second approach to applications that require

it. PEEX allows applications to choose their desired trade-off

between recall and precision (Figure 4).

In addition to comparing PEEX to deterministic techniques,

we demonstrate the need for and the effect of probabilistic

cleaning [7]. Figure 4 also shows the result of applying a

single cleaning constraint on ENTERED-ROOM events after

they have been detected by PEEX. With cleaning, PEEX can

detect ENTERED-ROOM events at 93% recall (with 66% precision

even though the probability threshold is only 0.05).

Finally, in order to determine whether PEEX is able to run in

near real-time, we measure the average time it takes to detect

events within each five second window. Our results showed

that PEEX can detect events in 110 ms per time window given

0

0.2

0.4

0.6

0.8

1

0 0.05 0.25 0.5 0.75 1

Prob threshold

R
e

c
a

ll

No Cleaning

Cleaning

0

0.2

0.4

0.6

0.8

1

0 0.05 0.25 0.5 0.75 1

Prob threshold

P
re

c
is

io
n

No Cleaning

Cleaning

(a) Recall (b) Precision

Fig. 4. PEEX event detection performance

ten event definitions and thus is easily able to run in near real-

time for a deployment with tens of users.

V. CONCLUSION

In this paper, we presented a probabilistic approach to high-

level event extraction from RFID data. We also presented the

design, implementation, and evaluation of PEEX, a data man-

agement system that effectively extracts probabilistic events

from RFID data using three key techniques: it translates event

definitions into SQL queries, it relies on confidence tables to

determine the probability of ambiguous events, and it uses

partial events to handle data errors.

Our long-term goal is to build an RFID data management

system, where a plethora of applications can extract, manage,

and possibly share high-level events. We view the work in this

paper as an important step towards this goal.

REFERENCES

[1] G. Borriello, W. Brunette, M. Hall, C. Hartung, and C. Tangney.
Reminding about tagged objects using passive RFIDs. In Proc. of the

6th Ubicomp Conf., Sept. 2004.
[2] N. Dalvi, C. Re, and D. Suciu. Query evaluation on probabilistic

databases. IEEE Data Engineering Bulletin, 29(1):25–31, 2006.
[3] C. Floerkemeier and M. Lampe. Issues with RFID usage in ubiquitous

computing applications. In Proc. of the 2nd Pervasive Conf., Apr. 2004.
[4] T. J. Green and V. Tannen. Models for incomplete and probabilistic

information. IEEE Data Engineering Bulletin, 29(1):17–24, March 2006.
[5] S. Jeffery, G. Alonso, M. J. Franklin, W. Hong, , and J. Widom.

Declarative support for sensor data cleaning. In Proc. of the 4th

Pervasive Conf., Mar. 2006.
[6] S. R. Jeffery, M. Garofalakis, and M. J. Franklin. Adaptive cleaning for

RFID data streams. In Proc. of the 32nd VLDB Conf., Sept. 2006.
[7] N. Khoussainova, M. Balazinska, and D. Suciu. Towards correcting

input data errors probabilistically using integrity constraints. In Proc.

of the Fifth MobiDE Workshop, June 2006.
[8] N. Khoussainova, M. Balazinska, and D. Suciu. Peex: Extracting

probabilistic events from RFID data. Technical Report 2007-11-02,
Department of Computer Science and Engineering, University of Wash-
ington, 2007.

[9] M. Philipose, K. P. Fishkin, M. Perkowitz, D. J. Patterson, D. Fox,
H. Kautz, and D. Hahnel. Inferring activities from interactions with
objects. IEEE Pervasive Computing, 3(4), 2004.

[10] J. Rao, S. Doraiswamy, H. Thakkar, and L. S. Colby. A deferred
cleansing method for RFID data analytics. In Proc. of the 32nd VLDB

Conf., Sept. 2006.
[11] V. Stanford. Pervasive computing goes the last hundred feet with RFID

systems. IEEE Pervasive Computing, 2(2), Apr. 2003.
[12] F. Wang and P. Liu. Temporal management of RFID data. In Proc. of

the 31st VLDB Conf., Sept. 2005.
[13] E. Welbourne, M. Balazinska, G. Borriello, and W. Brunette. Chal-

lenges for pervasive RFID-based infrastructures. In Proc. of PERTEC

Workshop, 2007.
[14] J. Widom. Trio: A system for integrated management of data, accuracy,

and lineage. In Proc. of the Second CIDR Conf., pages 262–276, Jan.
2005.

[15] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In Proc. of the 2006 SIGMOD Conf., June
2006.

3

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
