
Visual Road: A Video Data Management Benchmark
Brandon Haynes, Amrita Mazumdar

Magdalena Balazinska, Luis Ceze, Alvin Cheung

{bhaynes,amrita,magda,luisceze,akcheung}@cs.washington.edu

Paul G. Allen Center for Computer Science

University of Washington

http://visualroad.uwdb.io

ABSTRACT

Recently, video database management systems (VDBMSs)

have re-emerged as an active area of research and

development. To accelerate innovation in this area, we

present Visual Road, a benchmark that evaluates the

performance of these systems. Visual Road comes with a

data generator and a suite of queries over cameras positioned

within a simulated metropolitan environment. Visual Road’s

video data is automatically generated with a high degree

of realism, and annotated using a modern simulation and

visualization engine. This allows for VDBMS performance

evaluation while scaling up the size of the input data. Visual

Road is designed to evaluate a broad variety of VDBMSs: real-

time systems, systems for longitudinal analytical queries,

systems processing traditional videos, and systems designed

for 360
◦
videos. We use the benchmark to evaluate three

recent VDBMSs both in capabilities and performance.

KEYWORDS

Benchmarking and performance evaluation; multimedia

databases; video data management; virtual reality video

ACM Reference Format:

Brandon Haynes, Amrita Mazumdar and Magdalena Balazinska,

Luis Ceze, Alvin Cheung. 2019. Visual Road: A Video Data

Management Benchmark. In 2019 International Conference on
Management of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 16 pages. https://doi.org/

10.1145/3299869.3324955

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3324955

(a) Rain with dense clouds

(b) Overcast skies at sunset

Figure 1: Two frames from Visual Road cameras

illustrate the realism and variety of the benchmark.

Some depicted assets copyright [13] and [14]. Complete

videos available at visualroad.uwdb.io/datasets.

1 INTRODUCTION

Video data management has recently re-emerged as an

active research area due to advances in machine learning

and graphics hardware, as well as the emergence of

applications such as adaptive streaming and virtual reality.

This technology push and application pull have led the

community to develop many new systems to efficiently

process and manage video data [1, 20, 26, 32, 33, 35, 44].

Existing systems quantify their performance by reporting

their efficiency when processing various ad hoc workloads

both in terms of the input videos selected and the executed

queries. However, comprehensive and easily reproducible

system comparisons are missing. A key challenge is

that there is currently no clear way to reliably and

objectively benchmark performance among the various

http://visualroad.uwdb.io
https://doi.org/10.1145/3299869.3324955
https://doi.org/10.1145/3299869.3324955
https://doi.org/10.1145/3299869.3324955
visualroad.uwdb.io/datasets

recently proposed video database management systems

(VDBMSs). This deficiency is due to a lack of: (i) a robust,

sufficiently-complex video dataset (in terms of resolution,

quantity, duration, and variety of content); and (ii) an

architecture-agnostic specification of a common set of

queries that may be executed on current and future VDBMSs.

Analogous to standardized benchmarks for other areas

of data management research (such as transaction [53] and

analytical processing [55]), any benchmark for video data

processing needs the ability to test systems at different

scales and in a repeatable manner. To achieve this, short

video segments or ad hoc video streams will not suffice.

However, as shown in Table 1, such inputs have been typical

in the evaluation of recent VDBMSs (with the exception of

Scanner [44], which comes with multiple video streams but

has no way to scale input data size). While such data may

be used in isolation to evaluate properties such as prediction

accuracy or query planning performance of a specific system,

it does not allow conclusions about VDBMS performance

(e.g., in terms of throughput) when executing thousands

of such queries. It also complicates the comparison of the

various systems in terms of the types of queries they support.

To address this deficiency, we develop a new benchmark

aimed specifically at VDBMSs. As we describe in Section 2,

evaluating video database management systems poses a

number of unique challenges that do not arise in data

management benchmarks for other domains. For example,

using randomized inputs—as is common in benchmarks

for relational database systems—is infeasible due to the

inherent semantic structure of video, as algorithms such

as motion detection require consecutive video frames to

contain coherent features.

Equally difficult is determining whether a VDBMS

produces a correct answer to a query, which requires accurate

ground truth. Existing datasets are manually annotated with

this metadata, but manually annotating the hundreds of

thousands of inputs required to evaluate performance under

load, scalability, and other similar metrics is impractical.

To address these challenges, we develop Visual Road
1
,

a benchmark designed to evaluate the performance of

VDBMSs in the face of a diverse query workload. Visual Road

reproducibly and objectively measures how well a VDBMS

executes a battery of video-oriented workloads. Visual Road

includes a set of evaluation queries and a data generator. The

queries are divided into “microbenchmark” operations that

test isolated features found in current VDBMSs, along with

larger “composite” queries that measure a VDBMS’s ability

to execute typical end-to-end applications drawn from the

recent literature.

1
Name inspired by Linear Road [2], a benchmark for streaming database

management systems.

Table 1: Many recent video database systems evaluate

using only a small number of distinct inputs. In

Section 6 we evaluate the subset that have source

available and can be installed on our hardware.

Name # Distinct Inputs

Optasia [35] 3

LightDB [20] 4

Chameleon [31] 5

BlazeIt [32] 6

NoScope [33] 7

Focus [25] 14

Scanner [44] >100

Visual Road comes with a data generator that produces

input videos for the benchmark. To allow the creation of

a virtually unlimited number of these input videos, Visual

Road uses a modern simulation, visualization, and gaming

engine [13] to deterministically generate realistic videos

within a simulated metropolitan world (see Figure 1). Visual

Road allows users to vary the city size, number of cameras,

and length of video in its simulation to arbitrarily large

sizes. Additionally, its simulation allows for the automatic
calculation of precise ground truth and other metadata about

generated videos, without the need for manual annotation.

Finally, the cameras used in Visual Road are extremely

flexible. In addition to generating ordinary two-dimensional

video, they can also produce more complex video types

(e.g., panoramic 360
◦
video) that are used with a more

complex category of virtual reality (VR)-oriented benchmark

queries. Overall, Visual Road’s generated video datasets

are rich and highly realistic. They can serve to execute

various real-world applications such as vehicle tracking and

compute meaningful results. The queries provided with the

benchmark include a variety of both simple queries and

complex applications to exercise benchmarked systems along

various dimensions.

Visual Road is designed to be implementable across

a wide variety of VDBMS architectures, including those

that perform video querying at scale (e.g., Scanner [44],

Optasia [35], Chameleon [31]), operate on emerging forms

of video data (e.g., LightDB [20]), and perform deep learning

inference (e.g., NoScope [33], BlazeIt [32], Focus [25]). In the

same way that relational database systems target subsets

of benchmarks (e.g., a specific TPC query), Visual Road is

designed to be flexible: a user may either select specific

applicable queries or groups of queries appropriate for their

systems or execute the entire benchmark to demonstrate

broad functionality.

Visual Road is also extensible, such that future innovations

and workload types can be easily incorporated into

subsequent versions. This includes both the ability to

introduce new and unexpected elements into the video

simulation, and also to increase the complexity of the

benchmark queries (e.g., by increasing the number of

cameras, range of benchmark parameters, or available

machine learning algorithms).

Each benchmark query is specified in a VDBMS-agnostic

manner adaptable to a wide variety of VDBMS types and

architectures. To illustrate this wide applicability, we have

implemented the benchmark on three recent VDBMSs. We

discuss how Visual Road leads to objective and reproducible

results that can serve as a fair comparison between VDBMSs.

In summary, we make the following contributions:

• We develop Visual Road, a benchmark for video

database management systems. The benchmark

includes a data generator, along with microbenchmark

and composite queries (Sections 3 to 5).

• We show that the videos generated by Visual Road

produce results of sufficient quality to match existing,

manually-curated video datasets (Section 6).

• We implement Visual Road on several VDBMSs and

show how it helps to compare the systems both in

terms of capabilities and performance (Section 6).

The remainder of this paper is organized as follows. We

first describe the challenges associated with evaluating

VDBMSs at scale (Section 2). We then introduce the

Visual Road benchmark (Sections 3 and 4) and describe

its implementation (Section 5). We evaluate the quality of

the benchmark videos, the data generation performance,

and the ability of the benchmark to compare three modern

VDBMSs (Section 6). We conclude with related work and

future directions.

2 CHALLENGES

Designing a benchmark that targets VDBMSs poses

several unique challenges not found in existing database

benchmarks. These include:

Creating sufficiently large datasets. Many existing

video corpora (e.g., VIRAT [40], UA-DETRAC [56],

PETS04 [17], Okutama-Action [5]) consist of a modest

amount (< 30 hours) of curated videos. Such videos

cannot sufficiently scale without massive duplication

and redundancy. As we show in Section 6, executing

video workloads with a small number of distinct inputs

(reasonably) allows systems to optimize (e.g., by aggressive

caching) in ways that would not be possible with a

large number of video inputs. This optimization leads

to performance results that are skewed and impair

comparisons between systems. While duplicating or

randomly generating video might avoid this issue, these

approaches suffer from other challenges that we describe

below (and show to be problematic in Section 6).

Manual annotation. Existing video datasets are typically

hand-annotated with ground truth and other metadata.

Prior work has utilized such annotations to measure system

performance (e.g., classification accuracy). This manual

“human-in-the-loop” process does not scale well to allow

for the large datasets that are needed to evaluate system

performance at scale.

Semantic structure. Randomly-generated datasets, which

are commonly used in relational DBMS benchmarks

(e.g., TPC-C [53], TPC-H [55], TPC-E [54]), are ill-suited

for video-oriented workloads. Videos are inherently highly-

structured (e.g., pixels in adjacent video frames are highly

correlated), and both video encoders and VDBMSs take

advantage of these characteristics to speed up processing.

For instance, encoders exploit redundancies in adjacent

video frames for efficient compression. Because of this, a

benchmark that relies on noise or other randomly-generated

inputs will produce unrealistic results.

No universal language or functionality. To date, no

standard query language, data model, or functionality exists

across all VDBMSs (however, some work has recently

explored this space [20]). Expressing a set of queries that

can be implemented and executed across a wide variety of

VDBMSs remains a challenge.

Visual Road is designed to address the challenges described

above. Its simulation-oriented approach lets users to place

an arbitrary number of cameras, each with configurable

position, resolution, and field of view. This configurability

allows for the generation of a practically unlimited number

of input videos. Further, the resulting corpus is realistic—for

example, videos contain semantically-valid objects (e.g., cars,

buildings, pedestrians), and cameras with overlapping fields

of view both show the same objects (albeit from differing

perspectives).

Visual Road’s approach also allows for automatic

generation of ground truth and other metadata. If a VDBMS

query result indicates that a pedestrian is present in frame i
of video j , Visual Road is able to evaluate the geometry of the

scene that produced the video and automatically determine

whether this result is correct.

Finally, we have taken care to express each query in a

VDBMS- and architecture-agnostic manner. VDBMSs are free

to implement each such query in any manner is appropriate

for that system.

T38 T52

T24T10

T21

T31

T60 T8 T46

Traffic Camera Panoramic Camera Road

Figure 2: Overhead view of a randomized Visual Road

configuration with L = 9.

3 THE VISUAL ROAD BENCHMARK

Video used for the Visual Road benchmark is generated

in Visual City, a pseudorandomly-generated, simulated

metropolitan area. Visual City currently contains road

networks, vehicles, pedestrians, landscaping, buildings,

bridges, traffic, ground-based cameras, and other features

found in real-world cities. Visual City is also affected by

a number of conditions such as cloud cover, precipitation,

and sun position. Sample photos taken from Visual City

are shown in Figure 1. We posit that this environmental

complexity is both important and sufficient to ensure that

benchmarked VDBMSs are exercised in interesting ways.

The features of the generated city could also be extended in

subsequent versions of the benchmark (e.g., by incorporating

wildlife, tunnels, or lakes) to increase the complexity, variety,

and unexpectedness of the simulation.

3.1 Benchmark Data

As shown in Figure 2, Visual City is laid out as a disconnected

set of tiles. Each tile is drawn uniformly with replacement

from a pool of tiles associated with a particular version of

Visual Road. The version described in this paper contains 72

tiles (see Section 5) and each tile is several square kilometers

in size. Each tile contains different weather conditions,

pedestrian and vehicle densities, and geography.

Video data is captured in Visual City via a number of

cameras. Each tile is associated with a camera configuration

C that specifies various types and numbers of cameras. To

monitor traffic conditions, each tile contains ct randomly-

oriented traffic cameras positioned 10-20 meters above

a roadway, along with cp randomly-oriented panoramic
cameras positioned 5-10 meters above sidewalks. Each

panoramic camera is composed of four ordinary cameras

with overlapping 120
◦
fields of view positioned so that they

overlap to capture a 360
◦
field of view. The current Visual

Road prototype sets C = {ct , cp } = {4, 1} for each tile.

When generating video data, a user provides values

for four hyperparameters. A scale factor L determines the

number of tiles in the city. A user also selects a resolution (e.g.,
3840×2160) and a simulation duration that is globally applied
to each of the cameras. Finally, a random seed s allows other
users to deterministically reproduce datasets by reinitializing

the pseudorandom number generator with the same seed.

In addition to providing city size, the scale factor also

determines the number of queries generated throughout a

Visual City. The Visual Road prototype currently generates

4L queries for each type detailed in this section. This

batch size allows for a reasonable balance between dataset

generation time and benchmark execution time.

The Visual City Generator (VCG) is used to generate

input videos captured within Visual City. It accepts the

hyperparameters described above and uses these values to

construct a Visual City. First, it randomly chooses L tiles

from the available set of tiles (with replacement). Each tile is

configured and populated using a tile-specific configuration

(e.g., pedestrians and vehicles are randomly spawned in

number and locations specific to that tile). Cameras are then

randomly positioned in each tile subject to the constraints

described above. The VCG then executes the simulation and

captures videos generated by each camera. These videos are

encoded using the h264 codec [51] and stored as flat files (see

Section 6). The VCG also generates additional supporting

metadata required for verifying the results of specific queries

(e.g., Q6 in Section 4).

A VDBMS reports performance by executing the

benchmark using videos captured in a Visual City as input.

The benchmark comes with a set of pregenerated datasets

for immediate use (see Table 2); users may report results

using these datasets when comparing to other systems

(e.g., “We evaluate using version 1.0 of the 4k-short dataset”).

Alternatively, users may deterministically generate their own

datasets (see below) and report the configuration along the

results (e.g., “We generated and executed the Visual Road 1.0

benchmark using scale L, resolution R, duration t , and seed

s”). By using the same configuration, competing VDBMSs

can reproduce the identical dataset and compare results.

In this first version of the benchmark, we choose to only

allow users to adjust the scale factor, resolution, duration, and

seed parameters. This choice keeps the benchmark easy to

use. If the community finds it useful, however, future versions

could easily expose other parameters, such as testing only

on tiles with sunny weather or changing the density of the

cameras in individual tiles.

Table 2: Pregenerated datasets available at

visualroad.uwdb.io/datasets.

Name Hyperparameters

1k-short {L = 2,R = 960 × 540, t = 15 min}

1k-long {L = 4,R = 960 × 540, t = 60 min}

2k-short {L = 2,R = 1920 × 1080, t = 15 min}

2k-long {L = 4,R = 1920 × 1080, t = 60 min}

4k-short {L = 2,R = 3840 × 2160, t = 15 min}

4k-long {L = 4,R = 3840 × 2160, t = 60 min}

3.2 Benchmark Execution

A VDBMS can execute the benchmark either offline or online.
Offline processing simulates batch processing of historical

video streams, where the VDBMS has random access to

entire video files on persistent storage. Online processing

simulates real-time video processing, where data is exposed

via a forward-only iterator with unknown total duration.

A separate Visual City Driver (VCD) is provided with

the benchmark and is responsible for reading the input

videos, exposing encoded video data to a VDBMS, submitting

queries to the VDBMS being measured, and evaluating the

correctness of a VDBMS’s query results.

When benchmarking in online mode, a VDBMS may

access each video using either a named pipe (on a single

local file system) or via the RTP protocol [49]. In this mode,

video data is throttled to a simulated real-time throughput

(i.e., the VCD exposes video frames at the corresponding

camera’s capture rate). The VCD blocks on attempts to read

video data beyond this rate. For a VDBMS benchmarking in

offline mode, the VCD additionally ensures each input video

is available on the local file system (on a single node, if the

VDBMS supports distributed execution) or a distributed file

system (we currently support HDFS).

The VCD uses the scale factor to simulate submission of

simultaneous instances (a “query batch”) of each benchmark

query to the VDBMS. The VCD submits batches in

benchmark query order (i.e., Q1 is submitted before Q2).

A VDBMS may execute each batch in a manner that is most

performant (e.g., serially or in parallel), and may optionally

quiesce or restart upon completing a batch.

Each benchmark query is a template with one or more

parameters (see Table 3). The VCD creates each instance

in a query batch by assigning values selected uniformly at

random for each parameter from their respective domains.

The VDBMS is only responsible for executing the query

instance, and does not participate in selecting the parameter

values.

A VDBMS may do one of two things with the h264- or

hevc-encoded result of a query. First, in write mode, as a
VDBMS completes each instance in a query batch, it should

write the result to a VCD-specified location on the local file

system (or on a VCD-specified node for distributed systems)

so the VCD can verify the correctness of each output. In

this mode the time to persist results is included in the total

execution time for the query batch. Alternatively, streaming
mode allows a VDBMS to discard the results of a query

and avoid the write overhead. However, in this mode a

user must ensure that the results of the queries are correct,

either by executing a second time in write mode or by doing

so manually. We show in Section 6.4 that the performance

differences between these two modes are negligible.

Finally, the VCD also validates the correctness of the

results generated by a VDBMS. Depending on the query,

it does so either by frame validation, which compares

VDBMS output videos to reference output videos, or

semantic validation, which compares a query result with

the actual scene geometry used in its input(s). In Visual

Road, most microbenchmark queries are verified using frame

validation. For these queries, the VCD executes its reference

implementation and compares each frame with the VDBMS’s

output using a validation metric. While future versions of

Visual Road may allow for different metrics, the one used in

the present version is the peak signal-to-noise ratio (PSNR).

The PSNR is a frequently-used image comparison metric, and

values ≥ 40 dB are considered to be near-lossless [23, 28].

Visual Road adopts this threshold as a cutoff for validation.

Query Q2(c) and Q2(d) are verified using semantic

validation. In this case, the VCD compares a VDBMS’s

response to the actual objects that were present in the frames

used as input to the query. For example, if a VDBMS indicates

a car i is present in frame j, the VCD queries the simulation

engine to determine if car i was visible to the camera at the

instant the frame was captured.

When reporting results, an evaluator must report

validation descriptive statistics for each query. For queries

executed in online mode, this should be reported in frames

per second. A VDBMS executing offline analytical queries

should report total query runtime or frames per second. The

evaluator should also report other global elections such as

scale factor, resolution, duration, and execution mode.

4 VISUAL ROAD QUERIES

The Visual Road benchmark aims to evaluate VDBMS

performance by executing a varied workload. It does so by

measuring performance using microbenchmark (Table 5)

and composite macrobenchmark queries (Section 4.2).

Microbenchmark queries target the performance

of individual VDBMS operations in isolation. Each

microbenchmark involves a single, basic operation exposed

by recent VDBMSs that are common in video applications.

Composite queries, drawn from recent literature (see

Section 7), utilize two or more microbenchmarks to

implement more complex tasks.

visualroad.uwdb.io/datasets

Table 3: Microbenchmark parameters and domains.

Query Parameter Domain

Q1 x1, x2 0 ≤ x1 < x2 ≤ Rx
y1,y2 0 ≤ y1 < y2 ≤ Ry
t1, t2 0 ≤ t1 < t2 ≤ D

Q2(b) d [3..20]
Q2(c) A YOLO [46]

O {Pedestrian,Vehicle}
Q2(d) m [2..60]

ϵ (0, 1)
Q3 ∆x {Rx/2n |n ∈ [1..3]}

∆y {Ry/2n |n ∈ [1..3]}
bi {2n,n ∈ [16..22]}

Q4, Q5 α {2n |n ∈ [1..5]}
β {2n |n ∈ [1..5]}

A VDBMS individually measures its performance for each

query. As detailed previously, for a given query Qi , the VCD

uses the scale factor L to submit a query batch containing 4L
instances of Qi to the VDBMS. The free parameters for each

instance Q j
i , summarized in Table 3, are uniformly selected

(by the VCD) at random from their domain. Below we

describe each microbenchmark query. Each query operates

on a randomly-selected input video.

Several queries include ML-based computer vision

algorithms, such as object detection. The benchmark requires

that all VDBMSs use specified, state-of-the-art algorithms,

and focuses on evaluating the execution performance of

queries that need to apply those algorithms rather than

their quality. For the same reason, the benchmark videos

do not purposefully include unusual scenarios designed to

challenge computer vision methods. In case query accuracy

or algorithm selection becomes a concern, users of the

benchmark could be required to publish the F1 scores of

their query results.

4.1 Microbenchmarks

The following microbenchmark queries, formally defined

in Table 5, measure a VDBMS’s ability to repeatedly perform

small operations over input videos. Each is defined in terms

of familiar database operations (e.g., load, window, aggregate)

along with the convenience operations defined in Table 4.

Each video is composed of a sequence of frames that are
temporal samples of visual data with resolution Rx × Ry .
At coordinate (x,y) of each frame is a pixel that contains
a color in a color space (e.g., RGB, YUV). Each executing

VDBMS stores the query result on disk (when executed

in write mode), or streams the result (when executed in

streaming mode). In Section 4.2 we compose many of

these microbenchmarks to form more substantial, real-world

applications drawn from recent literature.

Table 4: Convenience operators used in

microbenchmark queries.

Name Type

PMap video → (pixel → pixel) → video
Map over individual pixels in a video

FMap video → (f rame → f rame) → video
Map over video frames

JoinP
video → video → (pixel → pixel → pixel)

→ video
Join (by pixel coordinate) over video inputs

and apply a projection on each joined pair

Interpolate
video → (f rame → N2 → f rame) →

N2 → video
Interpolate a video to a new resolution

Sample video → N2 → video
Downsample a video at a lower resolution

4.1.1 Video Manipulation.
Spatial & Temporal Selection (Q1). A VDBMS must

be able to efficiently spatially and temporally select

subregions of videos. This ability is exercised, for example,

in applications that select highlights containing relevant

data, construct cinematographic montages, or apply object

detection to a region of interest. Query Q1 measures a

VDBMS’s ability to perform this type of operation.

Given a cropping rectangle bounded by the respective

upper-left and lower-right points (x1,y1) and (x2,y2) and
a temporal range (t1, t2), query Q1 crops the frames and

duration of a random input videoVi . The cropping rectangle
points and temporal range are chosen uniformly at random.

Transformation (Q2) & Subquery (Q3). A VDBMS

must be able to efficiently perform transformations at various

granularities (e.g., per-pixel, using a stencil, over regions, and

for entire frames). Queries Q2 and Q3 test a VDBMS’s ability

to transform input videos at these scales.

The first transformation, Q2(a), requires that a

VDBMS convert a video to grayscale. The VCD reference

implementation does this by dropping chroma information

(i.e., the U and V channels in YUV color space) and leaves

luminescence (Y) unchanged.

Query Q2(b) performs a Gaussian blur convolution [48]

over an input video by applying a d×d kernel over the pixels

of each video. It does so by invoking a user-defined function

blur that is parameterized by the kernel size.

Next, query Q2(c) generates rectangular bounding boxes

for objects in an input video. It does so by applying an object-

detection algorithm A to each input video frame (in the

present version A is a singleton consisting of the YOLO [46]

algorithm). This algorithm associates each pixel pi in each

frame with zero or more object classes O = {o1, ...,on}. The
VDBMS associates a constant color c j with each class oj and a
“null” black color ω for regions not associated with any class.

Table 5: Visual Road microbenchmark queries. See

Table 4 for the types of non-standard database

operations. The function ω-coalesce is defined in

Equation 1.

Name Pseudocode

Q1 Select Load(Vi).Select(x1 ≤ x ≤ x2,

y1 ≤ y ≤ y2,

t1 ≤ t ≤ t2)

Crop video frames to a rectangle at (x1,y1) and
(x2,y2) and between time t1 and t2.

Q2 Transform

(a) Grayscale Load(Vi).PMap(f)
Convert a video to grayscale using f that takes

in a YUV pixel (y,u,v) and returns (y, 0, 0).
(b) Blur f = blur(d); Load(Vi).FMap(f)

blur generates a d × d Gaussian convolution

function f , which is applied to each frame of a

video.

(c) Boxes f = boxes(A,O); Load(Vi).FMap(f)
boxes returns a function f that identifies object
classesO using algorithmA. f is applied to the

video to produce boxes for detected instances.

(d) Masking w is a func. that creates a window ofm points.

a is a func. that computes the mean ofm pixels.

p is a func. that takes in two pixels pv , pb and

returns ω if |
pv−pb
pv | < ϵ , or pv otherwise.

B = Load(Vi).Window(w)

.Aggregate(a)

Load(Vi).JoinP(B, p)

Apply anm-frame mean-filter to each frame in

a video, and set pixels below threshold ϵ to ω.

Q3 Subquery f = encoder(B)

Load(Vi).Partition(∆x,∆y).Subquery(f)
Cut each video frame into tiles of size (∆x,∆y)
and re-encode each tile using f at bitrate B, as
generated by encoder .

Q4 Upsample Load(Vi).Interpolate(bilin,αRx , βRy)
Upsample each frame to size (αRx , βRy) using
bilinear interpolation.

Q5 Downsample Load(Vi).Sample(Rx/α ,
Ry/β)

Reduce each video frame to size (
Rx
α ,

Ry
β).

Q6 Union

(a) Boxes B = Q2c (Vi)

Load(Vi).JoinP(B, ω-coalesce)

Overlay bounding rectangles B (see Q2c) on

top of an input video Vi .
(b) Captions Load(Vi).JoinP(Load(Ci),ω-coalesce)

Overlay captions defined in Ci on top of an

input video Vi .

It finally produces an output video with frames containing

pixels given by:

p ′i =

{
cmin O when O , ∅

ω otherwise

Q2(c) is verified using semantic validation, where each

detected object is mapped back to an actual object in

the scene geometry that produced the input video, and a

reference bounding box is generated for the object. The

maximum Jaccard distance between the VDBMS-generated

and reference boxes must not exceed ϵ . In the prototype

version of Visual Road we describe in Section 5, we have

adopted the PASCAL VOC [16] threshold of ϵ = 0.5.
Query Q2(d) performs background masking on each

input video by applying a mean filter [3] to each video

frame. Background masking is useful for removing static,

unchanging regions of a frame (e.g., sidewalks and buildings)

and leaving the dynamic “foreground” areas untouched. For

each window ofm video frames fj , ..., fj+m in an input video,

a VDBMS should compute a background reference frame

bj =
1

m
∑

k ∈[i ..i+m] fk . Next, for each pixel pv in frame fj
and pb in background reference frame bj , the VDBMS should

output a black pixel ω when their difference is below the

threshold |
pv−pb
pv

| < ϵ and pv otherwise.

Finally, query Q3 performs an operation on individual

regions of each frame in an input video. For example, an

application might deliver less-important regions at lower

bitrates (see Q10) or blur regions of a video frame that contain

faces or other sensitive information. Q3 performs the former

operation by segmenting input frames into regions of size

(∆x,∆y). Each resulting region ui is re-encoded at a bitrate

given bybi . The resulting regions should then be recombined.

4.1.2 Computer Vision.
Interpolation & Resampling (Q4, Q5). Computer

vision algorithms and machine learning models frequently

require an input image sampled at a particular resolution.

These queries test a VDBMS’s ability to perform this

sampling by asking it to perform interpolation and

resampling operations on input videos. First, query Q4

increases each input video’s resolution to (αRx , βRy) using
bilinear interpolation. Query Q5 performs the inverse

operation: given an input video, the VDBMS downsamples

each frame to a lower resolution (
Rx
α ,

Ry
β).

Union (Q6). Modern video applications frequently

require combining two or more data streams. For example,

an augmented reality application might overlay advertising

or informational text on a user’s display. Queries Q6(a) and

Q6(b) test a VDBMS’s ability to perform these operations by

merging and combining data stored in various formats.

In particular, query Q6(a) merges an input videoVi with a

bounding box video B = Q2c (Vi) by performing an outer join

on the corresponding pixels within each video. The bounding

box video is generated offline by the VCD by applying the

reference implementation of query Q2(c) to the associated

input video. For each pair of corresponding pixels (pj ∈

Vi ,bj ∈ Bi), a VDBMS produces an output pixel using a

ω-coalesce projection given by:

p ′j =

{
bj when bj , ω

pj otherwise

(1)

The VCD exposes B in two formats: as an encoded video

and as a serialized sequence of bounding box class identifiers

and coordinates. VDBMSs may consume either format when

executing the query. As in Q2(c), the VCD uses the black

sentinel color ω to represent null pixels in the encoded

variant.

Query Q6(b) overlays a set of text annotations Ci onto an

input video. Like query Q6(a), this query uses Equation 1 to

generate output pixel colors. However, here the input Ci is

a WebVTT [43] file embedded as a metadata track within

the input video’s container. The VCD randomly generates

the WebVTT file and randomly varies position and non-

overlapping duration of each annotation. Benchmarking

VDBMSs may render the annotations using any font, and

need only support the line and position cue settings.

4.2 Composite Benchmarks

This section describes more complex, real-world

workloads that we call composite benchmarks. Each

composite benchmark leverages one or more of the

microbenchmarks introduced in the previous section.

Composite benchmarks are drawn from recent examples and

applications in the computer vision and machine learning

literature (see Section 7).

4.2.1 Computer Vision.
Object Detection (Q7). This query leverages Visual City

cameras to identify instances of a given object class o ∈ O
(e.g., pedestrians or vehicles). To draw attention to identified

objects, it also removes extraneous “background” portions

of each video frame that do not contain visual information

about the class and persists or streams the results.

At a high level, a VDBMS implementing this query first

applies the classification query Q2(c) to every input video.

Next, for each object type, it overlays the resulting bounding

boxes onto the input videos using query Q6(a). Finally, it

refines the results by performing background removal as

defined in Q2(d). Figure 3 illustrates this process applied to

a single video frame.

(a) Input video frame (b) Output video frame

Figure 3: Sample input and output for one frame of the

object detection query (Q7).

Table 6: Object detection query (Q7).

Input Input videos {V1, ...,Vn}
Object detection function A(V ,O)
Object classes O = {o1, ...,om}

Output Videos {V o1
1
, ...,V om

n } where

V oi
j = Q2d (Q6a(Vi ,Q2c (Vj ,A, {oi })))

As formalized in Table 6, the inputs to the object

detection query are the videos generated by the traffic

cameras scattered throughout Visual City. A VDBMS may

report results using additional object classes or detection

algorithms, so long as it also includes results for those defined

in Table 3.

Vehicle Tracking (Q8).Query 8 simulates the tracking of

vehicle sightings throughout Visual City. Each automobile in

Visual City has a unique front-facing license plate containing

six random alphanumeric digits.

A vehicle sighting instance is defined by the period in

which it is identifiable by one or more traffic cameras.

Initially, a vehicle enters a traffic camera’s field of view when

its license plate is unobscured relative to that camera. It exits
the traffic camera’s field of view when one or both of these

conditions is no longer met. The video frames occurring

between a vehicle entering and exiting a camera is a vehicle
tracking segment (VTS).
The VCD simulates searching for vehicles by issuing

vehicle tracking queries to the VDMBS. The input to this

query is the license plate of a random vehicle. As illustrated

in Figure 4, the output is a tracking video of temporally-

ordered (by entry time), concatenated VTSs for the vehicle

associated with that license plate.

This query is formalized in Table 7 as a recurrence. Its

output is defined by repeated application of Q2(c). Each

application uses a license plate recognition function L to

identify the nextVTS i in the input video. Query Q1 is used to
select the temporal range [ti , ti+1] and the output is appended
to the previous iteration until a fixpoint is reached.

VTS 1

VTS 2

VTS 3

VTS 1 VTS 2 VTS 3

Time 0

In
p

u
t

V
id

e
o

s

Output Video

Figure 4: Illustration of the vehicle tracking query

(Q8) on a Visual Road dataset (scale = 1) that contains

three vehicle tracking segments (VTSs). Each VTS is

temporally-ordered, concatenated, and output.

Table 7: Vehicle tracking query (Q8)

Input Traffic camera videos {V1, ...,Vn}
License plate l = (l1, ..., l6)
License plate recognition function L (OpenAPLR)

Output Video Vout = VTS1 ⊕ · · · ⊕ VTSn where

ti =
∑

j ∈[1..i−1] Duration(VTS j)
VTS i = Q1(Q6a(Vi ,Q2c (Vi ,L, {l}))

(ti , ti+1)))

4.2.2 Virtual Reality.
Virtual reality (VR) video is an important, emerging

subclass of video data. Panoramic VR videos (a.k.a 360
◦

videos) are one popular member of this subclass. Visual

Road includes two benchmark queries that target the VR

360
◦
data format. We include these queries because VR video

operations exercise sophisticated features possible only in

the most recent VDBMSs, and evaluating their performance

at scale is an important differentiating factor between such

systems. Operations on VR videos are also useful to test a

VDBMS’s ability to use higher resolutions than typically seen

in ordinary 2D video.

The following queries are more open-ended than the

previous benchmark categories, allowing an implementing

VDBMS additional freedom to optimize their execution.

Panoramic Stitching (Q9). Modern panoramic cameras

produce video panoramas by “stitching” together two

or more ordinary 2D videos into a 360
◦
video. To take

advantage of modern video compression, the spherical video

is reprojected onto a plane and encoded as if it were an

ordinary 2D video. Query Q9 requires that a VDBMS perform

this process by stitching video data from the panoramic

cameras scattered throughout Visual City. Recall from

Section 3 that each panoramic camera is composed of four

ordinary 2D cameras with a 120
◦
field of view. A VDBMS

implementing Q9 should accept the video streams from the

constituent 2D cameras, execute a function to convert the

four images into a single 360
◦
video, and output it. This

process should be repeated for every panoramic camera in

Visual City.

Table 8: Tile-Based Streaming (Q10).

Input 360
◦
videos {U1, ...,Un},Ui = Q9(Vi)

Bitrates B = (b1, ...,b9),bi ∈ {bh,bl }
Client resolution Rc = {r1, ..., rn}

Output Videos {V ′
1
, ...,V ′

n} where

V ′
i = Q5(Q3(Vi , j → bj), ri)

A VDBMS is free to implement the conversion in any

manner that is most efficient, with the constraints that

(i) the resulting 360
◦
videos should be equirectangularly

projected [48] and (ii) the result should be moderately similar

(i.e., within 30 dB PSNR) of the reference implementation.

Tile-Based Encoding (Q10). Recent research has

suggested that streaming “unimportant” areas of a 360
◦

video in lower resolution may yield substantial bandwidth

savings [21, 24, 59]. Additional savings may be achieved by

reducing the resolution of a VR video to match the resolution

of the VR headset or viewing device. This query, formalized in

Table 8, measures a VDBMS’s ability to use both techniques

to reduce bandwidth costs. To execute this query, a VDBMS

should use Q3 to decompose each video frame into nine

equal-sized “tiles” and encode high-importance tiles at a high-

quality bitrate bh and the remaining tiles at a low-quality

bitrate bl . The VDBMS should also use Q5 to downsample

the video to a lower resolution that matches the viewing

device. For simplicity, we treat these parameters as global

values that are applied over the entire duration of the input

360
◦
video.

5 IMPLEMENTATION

We implement the video generators for Visual Road 1.0

by adapting CARLA 0.84 [13], an open-source simulator

designed for autonomous driving research. CARLA itself

is designed as a “plugin” for the Unreal Engine 4.18, a

commercial gaming engine that provides physics, simulation,

and other graphics-oriented features. CARLA includes

resources, textures, and geometry, which form the basis of

the tiles used in Visual Road. It also exposes a configuration-

driven API that facilitates camera placement, rendering,

and other convenience functionality. We modify CARLA

to support efficient video encoding, camera rendering at

varying resolutions and frame rates, and multiple tiles and

configurations. All artifacts are developed using C++.

Version 1.0 of Visual Road contains a tile pool consisting

of 72 tiles. Each tile is constructed from one of two maps

(town01 and town02), both drawn from the set of CARLA

resources. Each is also associated with one of twelve different

weather configurations and one of three different vehicle

and pedestrian densities (e.g., a “rush hour” tile contains 120

vehicles and 512 pedestrians). Each tile is configured with 4

traffic cameras and 1 panoramic camera, both capturing at

30 frames per second.

1

60

3600

T
im

e
(m

in
u

te
s)

Query

Scanner LightDB NoScope

Figure 5: Visual Road log-scale performance by query

with scale factor L = 4 at 1k and 60 minutes.

We also develop a Visual Road reference implementation

for use in verifying benchmark results using PSNR

comparisons. The reference implementation was written in

C++ and depends on FFmpeg [6] for video-related operations.

For semantic verification, the reference implementation

interacts with the Unreal Engine to generate metadata

relating to objects in a camera’s frame of view.

To generate the videos that serve as benchmark, the VCG

(see Section 3) produces a sequence of video frames for

each camera in the city. These frames are periodic temporal

samples of visual data. Each element of a frame at (x,y) is
a pixel containing a color in a given color space (e.g., RGB,

YUV). Frames are physically sequenced using a constant

temporal period (i.e., a frame rate). Each video has a duration

D and constant frame resolution R = (Rx ,Ry). Finally, video
codecs compress each frame to produce an encoded video,

and each encoded input video is separately muxed using the

MP4 container format [29].

The current version of Visual Road includes support for

h264 [57] and hevc [51], and each query result must be

encoded using either of these codecs. Visual Road also

currently supports frame rates in the range of 15-90 frames

per second (FPS) and resolutions at 1k (960 × 540), 2k

(1920 × 1080), and 4k (3840 × 2160). However, we anticipate

that future versions will extend support to additional codecs,

containers, frame rates, and resolutions.

The VCG supports single-node and distributed modes

of input video generation. In distributed mode, the VCG

uses the Amazon Elastic Compute Cloud (EC2) to launch

multiple instances of the Unreal Engine in parallel. Each

node independently configures the Visual Road environment,

launches an Unreal Engine instance, simulates the tile for

which it is responsible, and collects video output.

6 EVALUATION

We experimentally evaluate Visual Road in three ways. First,

in Section 6.1, we demonstrate that Visual Road produces

performance results for VDBMSs similar to real-world

datasets and better than alternative synthetic approaches.

Next, in Section 6.2, we apply the benchmark to three recent

open-source VDBMSs and contrast the results. For these

experiments we show out-of-the-box performance numbers

for all of the experiments. Better results could certainly

be achieved for each system with appropriate tuning. Our

goal is to evaluate the benchmark and not the systems.

Next, in Section 6.3.1 we evaluate the quality of the video

generated by Visual Road, and in Section 6.4 we evaluate

the performance differences between write and streaming

execution modes. Finally, in Section 6.3.2 we evaluate the

scalability of Visual Road when generating large corpora.

Experimental configuration. Except where stated

otherwise, we perform experiments using a hardware

configuration consisting of a single physical machine

running Ubuntu 16.04 and containing an Intel 3.4 Ghz i7-

6800K processor with 6 cores and 32 GB RAM. It is equipped

with a 256 GB SSD drive and an Nvidia Quadro P5000 GPU.

Benchmarked VDBMSs. To show wide applicability, we

execute Visual Road on three recent, open-source VDBMSs:

Scanner [44], LightDB [20], and NoScope [33]. These

VDBMSs cover a variety of target use-cases, respectively

including processing at scale, virtual reality video, and

specialized application of deep learning models.

Scanner is an open-source VDBMS that offers efficient

distributed video processing at scale. We deploy Scanner

using its most recently-published Docker container, which

was built using CUDA 8.0 [39], OpenCV 3.2 [42], and FFmpeg

3.3.1 [6]. Scanner lacks support for video cropping (Q1),

captioning (Q6(b)), and license plate recognition (Q8), so

we add these features as custom C++ operators (respectively)

using a modified resize operator, the libwebvtt [38], and

libopenalpr [41]. We also make minor modifications to

Scanner’s grayscale and resizing kernels so that queries Q2(a)

and Q4-5 can be expressed.

LightDB is a VDBMS specialized for virtual reality

video workloads. We deploy the most recent prototype

of this VDBMS, which depends on CUDA 8.0 and

FFmpeg 2.8. LightDB exposes operations that accept

angles rather than pixel offsets, and so we adapt each

benchmark query by manually mapping between the two

coordinate systems. LightDB also lacks support for Q6(b)

captioning and Q8 license plate recognition, and so we use

LightDB’s C++ “plugin” mechanism—again using libwebvtt

and libopenalpr—to add support for these features.

Finally, NoScope is a specialized VDBMS that improves

the performance of applying deep learning models to video

at scale. We deploy the most recent prototype of NoScope,

which relies on TensorFlow 0.12, CUDA 8.0, and cuDNN 5.1.

Because NoScope is specialized for deep learning and does

not expose support for arbitrary queries or a mechanism

for extensibility, we are only able to express queries Q1 and

Q2(c) using this system.

Table 9: Visual Road ability to accurately measure VDBMS performance compared with real videos. Values show

total runtime in minutes and speedup relative to the UA-DETRAC baseline for LightDB and Scanner. Red cells

indicate a result where the relative performance between systems differs from the baseline, while Yellow cells

show performance discrepancies of an order of magnitude or more relative to the baseline.

Query

UA-DETRAC Visual Road Duplicates Random

LightDB Scanner LightDB Scanner LightDB Scanner LightDB Scanner

Q1 1 2 1 (0.9×) 2 (0.8×) 1 (0.7×) 2 (1.0×) 3 (4×) 61 (26×)

Q2(a) 1 4 1 (0.7×) 3 (0.8×) 1 (0.8×) 4 (0.9×) 5 (4×) 4 (1×)

Q2(b) 8 36 5 (0.6×) 25 (0.7×) 1 (0.2×) 31 (0.9×) 9 (1.1×) 43 (1.2×)

Q2(c) 25 472 23 (0.9×) 360 (0.8×) 3 (0.1×) 432 (0.9×) 25 (1×) 451 (1×)

Q2(d) 32 18 30 (0.9×) 19 (1.0×) 6 (0.2×) 19 (1.1×) 118 (4×) 57 (3×)

Q3 13 45 9 (0.7×) 43 (0.9×) 1 (0.1×) 46 (1.0×) 158 (13×) 313 (7×)

Q4 26 N/A 25 (0.9×) N/A 16 (0.6×) N/A 103 (4×) N/A

Q5 1 4 1 (0.8×) 3 (0.6×) 1 (0.4×) 4 (0.9×) 24 (19×) 13 (3×)

Q6(a) 2 14 2 (0.9×) 13 (0.9×) 1 (0.4×) 15 (1.1×) 29 (16×) 19 (1.4×)

Q6(b) 12 11 11 (0.9×) 8 (0.7×) 2 (0.2×) 11 (0.9×) 53 (5×) 66 (6×)

We execute all queries in this section using VCD’s offline

mode, since neither Scanner nor NoScope support operating

on live-streaming video data. Except where stated otherwise,

for all systems we use default settings and did not attempt to

optimize batch size or leverage other optimization strategies.

6.1 Dataset Validation

In this section, we evaluate whether Visual Road’s

synthetically generated data yields performance numbers

similar to using real videos. We also evaluate whether other

types of synthetic inputs could work as well as Visual Road

to test a VDBMS. Overall, we find that Visual Road-generated

input videos produce runtimes similar to using real-world,

manually-annotated data, whereas other synthetic datasets

may yield misleading or incorrect results.

As a real-world baseline, we use the UA-DETRAC [56]

video dataset. UA-DETRAC is a manually-annotated corpus

composed of recorded traffic camera videos of various

durations. Our experiments in this section utilize the training

subset, which consists of 60 sequences of 1k video recorded

at 25 FPS. The data are provided as 83,791 images, which we

h264-encode to produce approximately two hours of video.

We next use Visual Road 1.0 to create input videos that

match the UA-DETRAC configuration. We execute the VCG

with scale factor L = 16 at 1k resolution to produce 64 traffic

camera videos. From these, we randomly select 60 videos

and re-encode each to 25 FPS. We finally truncate each video

so its duration matches a corresponding video in the UA-

DETRAC dataset.

In addition to comparing with the Visual Road-generated

input videos, we also construct two alternative synthetic

datasets as follows:

Duplicate videos. A user might test a VDBMS by

reproducing one or more manually-annotated videos to

create a larger synthetic corpus. To simulate this process,

we select the longest UA-DETRAC video (“MVI_40172”) and

replicate it 60 times. We then truncate each replicated video

to match the duration of a corresponding video in the UA-

DETRAC dataset.

Random videos. Alternatively, a user might use

randomly-generated video to evaluate VDBMS performance.

To simulate this approach, we generate a fully-synthetic video

corpus consisting of random noise. As in the previous dataset,

we generate 60 videos matched in duration to UA-DETRAC.

We execute the microbenchmark queries on the Scanner

and LightDB VDBMSs using each of the datasets described

above. Because NoScope is only able to execute two of the

queries, we omit it from this experiment. We were not able to

execute Q4 on Scanner for reasons we describe in Section 6.2.

Table 9 shows the performance results for each VDBMS,

query, and dataset. For each of the queries, VDBMS

performance for the Visual Road input is similar to the UA-

DETRAC input. In no cases does the Visual Road dataset lead

to a result that disagrees with the UA-DETRAC counterpart,

meaning that the benchmark correctly identifies the faster

system for each query. In general, performance for each

query closely tracks the baseline.

The duplicate and random datasets do not consistently

agree with the UA-DETRAC performance results. For these

datasets, at least one query produces a result that disagrees

with the baseline (i.e., where system X performs faster than

system Y on UA-DETRAC but worse on the synthetic input)

and could lead a user to draw an incorrect inference about

the performance of a system when using real-world video.

Equally problematic are the cases where the performance

differences between systems differ by more than an order

of magnitude compared to the baseline dataset. We have

highlighted discrepancies of this magnitude on Table 9. Such

a difference occurs for more than one query in both the

duplicate and random datasets, and could lead a user to

draw an incorrect conclusion about the relative performance

differences between VDBMSs when using one of these

synthetic datasets.

Overall, system performance on Visual Road data is similar

to the real videos with the important advantage that Visual

Road data is synthetically generated and videos can thus be

scaled and parameterized as needed.

6.2 System Comparison

In this section, we apply the benchmark to the comparison

VDBMSs at various scale factors and show that Visual Road

is a useful benchmark for comparing performance between

systems. The time to generate a Visual Road dataset need

only be incurred once since a given configuration determines

the resulting videos.

Our first experiment gives a high-level overview of

VDBMS performance. In this experiment, we hold constant

the scale factor (L = 4), resolution (1k), and duration (1 hour).

We use this configuration and execute applicable benchmark

queries on each VDBMS.

Figure 5 shows the log-scale total runtime for each

system and query combination. NoScope shows excellent

performance on Q2(c)—which closely matches the

workloads it was designed to execute—but its highly

specialized implementation doesn’t support most of the

other benchmark queries. Scanner and LightDB show

similar performance on Q1, Q6(b), and Q7-Q10.

We next vary the scale factor L while holding other

parameters constant at their previous values. To accomplish

this, we used the VCG to generate a series of one-hour

datasets at 1k resolution with increasing the size of the

simulated city. We then execute each query on a VDBMS and

measure the total runtime until completion. As we discussed

previously, the NoScope system only supports Q1 and Q2(c)

and so we show results only for these queries.

Figure 6 shows detailed VDBMS performance for each

benchmark query. At small scale factors, no single system

dominates across all queries. As the scale factor increases,

however, Scanner often falls behind the other comparison

systems. This drop-off appears to be due to memory

thrashing as more video data are introduced. Scanner also

suffers from a poorly-performing resize kernel (Q1) and its

use of the Caffe [30] deep learning framework to execute the

Q2(c) YOLO neutral network.

LightDB performs well across many queries, but suffers

from a CPU-only implementation of the captioning query. As

expected, NoScope excels at efficiently applying the YOLO

neural network in query Q2(c).

Both Scanner and LightDB have memory-related issues

when executing Q4. When we execute this query on Scanner,

it quickly allocates all available memory and thereafter fails

to make progress. This occurs even when we attempt to

execute Q4 on Scanner with one input video or with a custom,

Python-based implementation of the resize operator.

LightDB exhibits similar issues when attempting to

subquery (Q3) or resize (Q4) more than 40 videos, after which

it fails due to lack of GPU memory. We work around this by

issuing these queries in two batches — one with the first 40

videos, and a second with the rest.

We also observe that the composite and VR benchmark

queries took far longer for both systems than did the

microbenchmark queries (with the exception of Q2(c),

which requires executing an expensive convolutional neural

network). This supports that Visual Road is effectively

targeting a wide range of workload complexities.

Our final comparison shows the lines of code (LOC)

required to execute each query on a VDBMS. To calculate

LOC, we construct a file containing the minimal code

required to execute each query, auto-format it, and count the

number of non-empty lines. Scanner and NoScope expose

Python bindings and we use autopep for formatting; we

similarly use clang-format for LightDB’s C++ API. We

separately count implementation for queries that required

additional logic (e.g., LightDB’s text caption plugin for Q6(b))

using the same approach.

Figure 7 shows the resulting counts. Here, Scanner and

LightDB have similar LOC counts for many queries. The

same is true for supporting extension implementation,

primarily because both are written in C++. Because NoScope

narrowly targets only a single query, invoking it requires

only a few lines of Python code.

Overall, Visual Road effectively shows that NoScope is

an excellent, highly specialized engine while Scanner and

LightDB are more general purpose. It also exposes the

performance advantages and limitations of each system on

the different query types.

6.3 Video Quality & Generation Time

6.3.1 Quality of Video. In this section we examine the

quality of video produced by Visual Road and how similar it

is to real video. Again, our goal is to provide evidence that

videos are of good enough quality to be used to evaluate

query execution time.

To evaluate this aspect, we use the YOLOv2 [46] model to

identify automobiles (i.e., cars and vans) in both synthetic

Visual Road and real UA-DETRAC video. This model comes

pretrained on the COCO training/validation dataset [34].

Each test set contains 1920 randomly-selected frames.

0

1

2

Q1

0

1

2

0 2 4 6 8

Q5

0

1

2

Q2(a)

0

1

2

0 2 4 6 8

Q6(a)

0

2

4

6

8

Q2(b)

0

1

2

0 2 4 6 8

Q6(b)

0

24

48

72

Q2(c)

0

24

48

72

0 2 4 6 8

Q7

0

2

4

6

8

Q2(d)

0

24

48

72

0 2 4 6 8

Q8

0

2

4

6

8

Q3

0

24

48

72

0 2 4 6 8

Q9

0

2

4

6

8

Q4

0

24

48

72

0 2 4 6 8

Q10

Scale Factor

T
im

e
(m

in
u
te

s)

Figure 6: VDBMS performance showing, at various scale factors, the total time to execute the benchmark queries.

0

20

40

60

80

L
in

es
 o

f
C

o
d

e

Scanner LightDB NoScope

(1
6

5
) (2

4
5

)

(1
8

7
)

Figure 7: Lines of code (LOC) required to execute each

supported benchmark query. Solid bars show LOCs

to implement query and hashed bars for supporting

extension code. LOCs over 80 shown in parenthesis.

The average precisions (APs) at 50% IoU for the Visual

Road and UA-DETRAC datasets were respectively 72 and

75%. This is similar to results reported by Redmon & Farhadi

(AP = 77% [46]) for this model on the “car” category

of another benchmark dataset [16]. This suggests that

the semantic structure of the synthetic Visual Road video

is similar to that of real video and supports its use for

evaluating the query execution time of a VDBMS at scale.

However, these results notwithstanding, we would like to

again emphasize that Visual Road is not intended to train

machine learning models or evaluate a VDBMS in terms of

prediction accuracy.

6.3.2 Generator Performance. We next explore the

performance of the Visual Road Generator (VCG) when

creating large video datasets. Figure 8 shows the total time

to generate a one-hour dataset with increasing scale factor

and at three resolutions: 1k, 2k, and 4k. For this experiment,

we executed the VCG on a single node using the hardware

configuration described previously.

0

100

200

300

1 2 3 4

T
im

e
(H

o
u

rs
)

Scale Factor

1K 2K 4K

Figure 8: Performance

by scale/resolution (4

nodes, 60 minutes)

0

25

50

1 2 3 4

T
im

e
(H

o
u

rs
)

Nodes

Figure 9: Performance

by #nodes (scale 2, 1k, 60

minutes).

These results show an approximately linear increase in

single-node generation time as the scale factor increases.

This result is intuitive, since (i) the number of cameras is a

linear function of scale factor, (ii) at a constant resolution

the total number of generated pixels increases linearly with

number of cameras, and (ii) the underlying scene geometry

must be recalculated on a per-camera basis, precluding

opportunities to render in parallel. The 4k generation time

increases more rapidly due to a software limitation related

to the number of cameras that can be simultaneously

instantiated; we plan to further optimize this in the future.

We next evaluate the performance of the VCG in

distributed mode when generating video in parallel using

multiple nodes. We hold constant scale factor (L = 2),

resolution (1k), and duration (1 hour), and vary the number

of nodes used to execute the VCG. For this experiment, we

use p3.2xlarge nodes on the Amazon Elastic Compute Cloud

(EC2) to generate video in parallel. Each instance has one

Nvidia V100 GPU, 8 logical cores, and 61GiB of RAM.

Figure 9 shows the time required by the VCG to generate

a dataset with the above configuration and given number

of nodes. Because dataset generation does not require

coordination between cameras, we see an expected linear

decrease in generation time as we increase the number of

nodes available for processing.

6.4 Write & Discard Modes

Our final set of experiments evaluate the performance

differences between benchmark execution in write and

streaming modes (see Section 3.2). To do so, we executed

the benchmark on the Scanner and LightDB systems in each

execution mode. To support streaming mode on Scanner, we

modified each query to send results to the null device. We

used LightDB’s sink operator for this operation.

For each query, we found that the performance difference

between the two modes was less than 2.5%. This difference

is in part due to pipelineing and also because disk IO is

inexpensive relative to video compression.

7 RELATEDWORK

The database community has a long history of standardizing

on various benchmarks that target a wide range of

data management applications. These applications include

longstanding topics such as OLTP [53], OLAP [44], and

streaming [2]. They also covermoremodern areas such as the

Internet of things [4], block chains [12], social networks [15],

and big data analytics [52]. Visual Road complements these

benchmarks by extending robust support for performance

evaluation of video processing at scale and motivates future

work in querying functionality and performance.

To date, we are aware of no video performance benchmark

that scales to an unlimited duration or resolution and does

not require manual annotation, despite the fact that a number

of recent VDBMSs have emerged to support a wide range of

modern applications. We target most of these applications

in this benchmark (e.g., license plate recognition [35,

60] (Q8); background subtraction/masking [35] (Q2(d),

Q6); general object detection [20, 25, 31, 32, 44, 60]

(Q2(c), Q7); decode performance [20, 44], stitching [26,

44] (Q9); up/downsampling [26] (Q4,Q5,Q10); user-defined

transformations [1] (Q2(a-d)); tile-based encoding [20, 21, 24,

59] (Q10)). These VDBMSs differ from previous-generation

VDBMSs in that they support applications beyond simple

content search and information retrieval. Representative

systems include those shown in Table 1. Other work targets

specific aspects of video data management such as predicate

push-down [36]. Each system benefits from Visual Road, which

enables objective comparison of features and performance.

Several recently-released video-oriented simulation

frameworks target specific aspects of AI model training.

These include CARLA [13]—on which the Visual Road

prototype is built—along with others such as AirSim [50]

and DeepDrive [11]. Other specialized systems target

military (e.g., UTSAF [45]) or medical applications (e.g.,

[8]). While these frameworks all use modern simulation and

visualization software (e.g., Unreal), they are not designed to

produce large amounts of heterogeneous video, nor do they

come with queries useful for evaluating VDBMS performance.

A number of video-oriented datasets and benchmarks

have also emerged that target various aspects of machine

learning. These include UA-DETRAC [56], BDD100K [58],

ApolloScape [27], WebCamT [61], and ActivityNet [22]. While

these might be used to evaluate VDBMS performance, they are

of fixed, modest size and must be laboriously annotated.

Generalizability and transferability of results is a significant

challenge to applications that leverage synthetic data for use

in real-world applications. Prior work in several areas have

examined this issue. For example, in their survey of robot

simulators, Craighead et al. argued that contemporaneous

simulation software had high physical fidelity [9]. In a

subsequent survey on UAV and robot simulators, Cook et

al. drew similar conclusions in oceanographic robotics with

respect to the physics engines [7]. In the computer vision

domain, researchers have evaluated the transferability of

models learned on synthetic data to real-world applications.

Previous approaches have used various transferability metrics

(e.g., precision/recall [19], multi-object tracking accuracy [18],

collision-free percentage [47], average accuracy [10], ROC

curve [37], observed similarity [50]). Some previous work has

demonstrated that synthetic data leads to superiormodelswhen

data is limited or of low variety [19]. Visual Road evaluates

transferability using an approach similar to Hattori et al. [19].

8 CONCLUSION & FUTUREWORK

We presented Visual Road, a benchmark for video data

management systems (VDBMSs). Visual Road comes with a

data generator that produces an unlimited amount of synthetic

video generated by simulating an active metropolitan area,

alongwith a suite of queries that evaluate VDBMS performance.

Our results show that video generated using Visual Road

closely matches real-world, manually-annotated video

corpora and allows VDBMSs to be evaluated at any scale. We

used an initial implementation of the Visual Road benchmark

to evaluate the performance of several modern VDBMSs

and show that it is a useful tool for capturing meaningful

performance comparisons between systems. As visualization

and simulation tools evolve, future versions of Visual Road

will automatically fuse tiles, track objects across tiles, and

support increasingly complex procedurally-generated tiles.

Acknowledgments. This work is supported by the NSF through grants CCF-

1703051, IIS-1546083, CCF-1518703, and CNS-1563788; DARPA award FA8750-16-2-

0032; DOE award DE-SC0016260; a Google Faculty Research Award; an award from

the University ofWashington Reality Lab; gifts from the Intel Science and Technology

Center for Big Data, Intel Corporation, Adobe, Amazon, Facebook, Huawei, and

Google; and by CRISP, one of six centers in JUMP, a Semiconductor Research

Corporation (SRC) program sponsored by DARPA.

REFERENCES

[1] Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.

2018. Sprocket: A Serverless Video Processing Framework. In SoCC.
263–274.

[2] Arvind Arasu, Mitch Cherniack, Eduardo F. Galvez, David Maier,

Anurag Maskey, Esther Ryvkina, Michael Stonebraker, and Richard

Tibbetts. 2004. Linear Road: A Stream Data Management Benchmark.

In PVLDB. 480–491.
[3] Gonzalo R. Arce. 2004. Nonlinear Signal Processing - A Statistical

Approach. Wiley.

[4] Martin F. Arlitt, Manish Marwah, Gowtham Bellala, Amip Shah, Jeff

Healey, and Ben Vandiver. 2015. IoTAbench: an Internet of Things

Analytics Benchmark. In ICPE. 133–144.
[5] Mohammadamin Barekatain, Miquel Martí, Hsueh-Fu Shih, Samuel

Murray, Kotaro Nakayama, Yutaka Matsuo, and Helmut Prendinger.

2017. Okutama-Action: An Aerial View Video Dataset for Concurrent

Human Action Detection. In CVPR. 2153–2160.
[6] Fabrice Bellard. 2018. FFmpeg. https://ffmpeg.org.

[7] Daniel Cook, Andrew Vardy, and Ron Lewis. 2014. A survey of AUV

and robot simulators for multi-vehicle operations. In AUV. 1–8.
[8] Brent Cowan, Hamed Sabri, Bill Kapralos, Sayra Cristancho, Fuad

Moussa, and Adam Dubrowski. 2011. SCETF: Serious game surgical

cognitive education and training framework. In IGIC. 130–133.
[9] Jeff Craighead, Robin R. Murphy, Jenny Burke, and Brian F. Goldiez.

2007. A Survey of Commercial & Open Source Unmanned Vehicle

Simulators. In ICRA. 852–857.
[10] César Roberto de Souza, Adrien Gaidon, Yohann Cabon, and Antonio

Manuel López Peña. 2017. Procedural Generation of Videos to Train

Deep Action Recognition Networks. In CVPR. 2594–2604.
[11] DeepDrive 2018. DeepDrive: Self-Driving AI. https://deepdrive.io.

[12] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi,

and Kian-Lee Tan. 2017. BLOCKBENCH: A Framework for Analyzing

Private Blockchains. In SIGMOD. 1085–1100.
[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez,

and Vladlen Koltun. 2017. CARLA: An Open Urban Driving Simulator.

In CoRL. 1–16.
[14] Epic Games. 2019. Unreal Engine 4. https://www.unrealengine.com.

[15] Orri Erling, Alex Averbuch, Josep-Lluís Larriba-Pey, Hassan Chafi,

Andrey Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A.

Boncz. 2015. The LDBC Social Network Benchmark: Interactive

Workload. In SIGMOD. 619–630.
[16] Mark Everingham, Luc J. Van Gool, Christopher K. I. Williams, John M.

Winn, and Andrew Zisserman. 2010. The Pascal Visual Object Classes

(VOC) Challenge. IJCV 88, 2 (2010), 303–338.

[17] Robert B Fisher. 2004. The PETS04 surveillance ground-truth data sets.

In PETS. 1–5.
[18] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora Vig. 2016.

VirtualWorlds as Proxy for Multi-object Tracking Analysis. In CVPR.
4340–4349.

[19] Hironori Hattori, Vishnu Naresh Boddeti, Kris M. Kitani, and Takeo

Kanade. 2015. Learning scene-specific pedestrian detectors without

real data. In CVPR. 3819–3827.
[20] Brandon Haynes, Amrita Mazumdar, Armin Alaghi, Magdalena

Balazinska, Luis Ceze, and Alvin Cheung. 2018. LightDB: A DBMS for

Virtual Reality Video. PVLDB 11, 10 (2018), 1192–1205.

[21] Brandon Haynes, Artem Minyaylov, Magdalena Balazinska, Luis Ceze,

and Alvin Cheung. 2017. VisualCloud Demonstration: A DBMS for

Virtual Reality. In SIGMOD. 1615–1618.
[22] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and

Juan Carlos Niebles. 2015. ActivityNet: A large-scale video benchmark

for human activity understanding. In CVPR. 961–970.

[23] Alain Horé and Djemel Ziou. 2010. Image Quality Metrics: PSNR vs.

SSIM. In ICPR. 2366–2369.
[24] Mohammad Hosseini and Viswanathan Swaminathan. 2016. Adaptive

360 VR Video Streaming Based on MPEG-DASH SRD. In ISM. 407–408.

[25] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodík, Shivaram

Venkataraman, Paramvir Bahl, Matthai Philipose, Phillip B. Gibbons,

and Onur Mutlu. 2018. Focus: Querying Large Video Datasets with

Low Latency and Low Cost. In OSDI. 269–286.
[26] Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav

Tverdokhlib, Amit Yajurvedi, Paul Dapolito IV, Xifan Yan, Maxim

Bykov, Chuen Liang, Mohit Talwar, Abhishek Mathur, Sachin Kulkarni,

Matthew Burke, and Wyatt Lloyd. 2017. SVE: Distributed Video

Processing at Facebook Scale. In SOSP. 87–103.
[27] XinyuHuang, Xinjing Cheng, QichuanGeng, Binbin Cao, Dingfu Zhou,

Peng Wang, Yuanqing Lin, and Ruigang Yang. 2018. The ApolloScape

Dataset for Autonomous Driving. CoRR abs/1803.06184 (2018).

[28] Sinisa Ilic, Mile Petrovic, Branimir Jaksic, Petar Spalevic, Ljubomir

Lazic, and Mirko Milosevic. 2013. Experimental analysis of

picture quality after compression by different methods. Przeglad
Elektrotechniczny (2013), 0033–2097.

[29] International Organization for Standardization. 2003. Coding of audio-
visual objects – Part 14: MP4 file format. Standard ISO/IEC 14496-

14:2003.

[30] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.

Caffe: Convolutional Architecture for Fast Feature Embedding. In

ACMMM. 675–678.

[31] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodík, Siddhartha

Sen, and Ion Stoica. 2018. Chameleon: scalable adaptation of video

analytics. In SIGCOMM. 253–266.

[32] Daniel Kang, Peter Bailis, and Matei Zaharia. 2018. BlazeIt:

Fast Exploratory Video Queries using Neural Networks. CoRR
abs/1805.01046 (2018).

[33] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei

Zaharia. 2017. NoScope: Optimizing Deep CNN-Based Queries over

Video Streams at Scale. PVLDB 10, 11 (2017), 1586–1597.

[34] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro

Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014.

Microsoft COCO: Common Objects in Context. In ECCV. 740–755.
[35] Yao Lu, Aakanksha Chowdhery, and Srikanth Kandula. 2016. Optasia:

A Relational Platform for Efficient Large-Scale Video Analytics. In

SoCC. 57–70.
[36] Yao Lu, Srikanth Kandula, and Surajit Chaudhuri. 2018. Interactive

Demonstration of Probabilistic Predicates. In SIGMOD. 1669–1672.
[37] Javier Marín, David Vázquez, David Gerónimo, and Antonio M. López.

2010. Learning appearance in virtual scenarios for pedestrian detection.

In CVPR. 137–144.
[38] Mozilla Foundation and Contributors 2018. WebVTT parsing library.

https://github.com/hihihippp/webvtt-3.

[39] NVIDIA Corporation. 2007. NVIDIA CUDA Compute Unified Device
Architecture Programming Guide. NVIDIA Corporation.

[40] Sangmin Oh, Anthony Hoogs, A. G. Amitha Perera, Naresh P. Cuntoor,

Chia-Chih Chen, Jong Taek Lee, Saurajit Mukherjee, J. K. Aggarwal,

Hyungtae Lee, Larry S. Davis, Eran Swears, Xiaoyang Wang, Qiang Ji,

Kishore K. Reddy, Mubarak Shah, Carl Vondrick, Hamed Pirsiavash,

Deva Ramanan, Jenny Yuen, Antonio Torralba, Bi Song, Anesco

Fong, Amit K. Roy-Chowdhury, and Mita Desai. 2011. A large-scale

benchmark dataset for event recognition in surveillance video. InCVPR.
3153–3160.

[41] OpenALPR Technology. 2018. Open Automatic License Plate

Recognition Library. http://www.openalpr.com.

[42] OpenCV. 2018. Open Source Computer Vision Library. https://opencv.

org.

https://ffmpeg.org
https://deepdrive.io
https://www.unrealengine.com
https://github.com/hihihippp/webvtt-3
http://www.openalpr.com
https://opencv.org
https://opencv.org

[43] Silvia Pfeiffer. 2018. WebVTT: The Web Video Text Tracks Format.
Candidate Recommendation. W3C. https://www.w3.org/TR/2018/CR-

webvtt1-20180510/.

[44] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. 2018.

Scanner: efficient video analysis at scale. TOG 37, 4 (2018), 138:1–

138:13.

[45] Phongsak Prasithsangaree, Joseph Manojlovich, Jinlin Chen, and

Michael Lewis. 2003. UTSAF: a simulation bridge between OneSAF

and the Unreal game engine. In SMC. 1333–1338.
[46] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster,

Stronger. In CVPR. 6517–6525.
[47] Fereshteh Sadeghi and Sergey Levine. 2017. CAD2RL: Real Single-

Image Flight Without a Single Real Image. In RSS.
[48] David Salomon. 2011. The Computer Graphics Manual. Springer.
[49] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP: A

Transport Protocol for Real-Time Applications. RFC 3550.

[50] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. 2017.

AirSim: High-Fidelity Visual and Physical Simulation for Autonomous

Vehicles. In FSR. 621–635.
[51] Gary J. Sullivan, Jens-Rainer Ohm, Woojin Han, and Thomas Wiegand.

2012. Overview of the High Efficiency Video Coding (HEVC) Standard.

TCSVT 22, 12 (2012), 1649–1668.

[52] Xinhui Tian, ShaopengDai, Zhihui Du,Wanling Gao, Rui Ren, Yaodong

Cheng, Zhifei Zhang, Zhen Jia, Peijian Wang, and Jianfeng Zhan. 2017.

BigDataBench-S: An Open-Source Scientific Big Data Benchmark Suite.

In IPDPS. 1068–1077.

[53] Transaction Processing Performance Council. 2018. TPC-C Benchmark.

http://www.tpc.org/tpcc.

[54] Transaction Processing Performance Council. 2018. TPC-E Benchmark.

http://www.tpc.org/tpce.

[55] Transaction Processing Performance Council. 2018. TPC-H

Benchmark. http://www.tpc.org/tpch.

[56] Longyin Wen, Dawei Du, Zhaowei Cai, Zhen Lei, Ming-Ching Chang,

Honggang Qi, Jongwoo Lim, Ming-Hsuan Yang, and Siwei Lyu. 2015.

UA-DETRAC: A New Benchmark and Protocol for Multi-Object

Detection and Tracking. arXiv CoRR abs/1511.04136 (2015).

[57] Thomas Wiegand, Gary J. Sullivan, Gisle Bjntegaard, and Ajay Luthra.

2003. Overview of the H.264/AVC video coding standard. TCSVT 13, 7

(2003), 560–576.

[58] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao,

Vashisht Madhavan, and Trevor Darrell. 2018. BDD100K: A Diverse

Driving Video Database with Scalable Annotation Tooling. CoRR
abs/1805.04687 (2018).

[59] Alireza Zare, Alireza Aminlou, Miska M. Hannuksela, and Moncef

Gabbouj. 2016. HEVC-compliant Tile-based Streaming of Panoramic

Video for Virtual Reality Applications. In ACMMM. 601–605.

[60] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodík, Matthai

Philipose, Paramvir Bahl, and Michael J. Freedman. 2017. Live Video

Analytics at Scale with Approximation and Delay-Tolerance. In NSDI.
377–392.

[61] Shanghang Zhang, Guanhang Wu, João P. Costeira, and José M. F.

Moura. 2017. Understanding Traffic Density from Large-Scale Web

Camera Data. In CVPR. 4264–4273.

http://www.tpc.org/tpcc
http://www.tpc.org/tpce
http://www.tpc.org/tpch

	Abstract
	1 Introduction
	2 Challenges
	3 The
	3.1 Benchmark Data
	3.2 Benchmark Execution

	4 Visual Road Queries
	4.1 Microbenchmarks
	4.2 Composite Benchmarks

	5 Implementation
	6 Evaluation
	6.1 Dataset Validation
	6.2 System Comparison
	6.3 Video Quality & Generation Time
	6.4 Write & Discard Modes

	7 Related Work
	8 Conclusion & Future Work
	References

