
Bootstrapping Compositional VideoQuery Synthesis with
Natural Language and PreviousQueries from Users
Manasi Ganti

University of Washington
Seattle, USA

mganti@cs.washington.edu

Enhao Zhang
University of Washington

Seattle, USA
enhaoz@cs.washington.edu

Magdalena Balazinska
University of Washington

Seattle, USA
magda@cs.washington.edu

Abstract
With the emerging ubiquity of video data across diverse applica-
tions, the accessibility of video analytics is essential. To address this
goal, some state-of-the-art systems synthesize declarative queries
over video databases using example video fragments provided by
the user. However, finding examples of what a user is looking for
can still be tedious. This work presents POLY-VOCAL, a new sys-
tem that eases this burden. POLY-VOCAL uses multiple forms of
user input to bootstrap the synthesis of a new query, including
textual descriptions of the user’s search and previously synthesized
queries. Our empirical evaluation demonstrates that POLY-VOCAL
significantly improves accuracy and accelerates query convergence
compared with query synthesis from only user-labeled examples,
while lowering the effort required from users.

ACM Reference Format:
Manasi Ganti, Enhao Zhang, andMagdalena Balazinska. 2025. Bootstrapping
Compositional Video Query Synthesis with Natural Language and Previous
Queries from Users. In Workshop on Human-In-the-Loop Data Analytics
(HILDA’ 25), June 22–27, 2025, Berlin, Germany. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3736733.3736738

1 Introduction
As video data becomes increasingly prevalent across domains such
as traffic analytics, security, and civil engineering [10, 11, 28, 32, 33],
there is a growing need to manage and query large video databases.
Recent video database management systems (VDBMSs) allow users
to retrieve specific events from large video datasets by specifying
declarative queries [2, 3, 7, 23]. However, for users without database
expertise, expressing compositional queries, where multiple objects
interact in space and time (e.g., “find video fragments where a
suspicious person is loitering outside the entrance of a building”)
using a declarative language can be difficult.

To address this challenge, some systems provide alternative ways
for users to analyze and query videos [4, 17, 35, 40]. In particular,
EQUI-VOCAL [40] provides a query-by-example interface, where
users provide a few example video segments (for example, 10 posi-
tive and 10 negative examples) of their target event and the system
automatically synthesizes a declarative query in a bottom-up fash-
ion to find matching events. EQUI-VOCAL initializes its query
synthesis process with an empty query and incrementally adds
predicates, employing user labels to iteratively build a final query.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution 4.0 International License.
HILDA’ 25, June 22–27, 2025, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1959-2/2025/06
https://doi.org/10.1145/3736733.3736738

While this approach eliminates the need for users to articulate
declarative queries, it still has several limitations that we address
in this paper.

First, usersmustmanually locate positive examples of their target
event to initiate query synthesis, which can be time-consuming and
labor-intensive, especially as event specificity increases. Second,
queries are synthesized from scratch, assuming no prior knowledge
of the target event beyond a minimal set of initial examples. This
can result in a lengthy learning process with many iterative steps.
Lastly, intermediate queries synthesized in early iterations are of-
ten coarse-grained with low performance, making them difficult
to disambiguate from other candidate queries. Labeling mistakes
can further exacerbate errors in these early stages and propagate
through later iterations, significantly derailing the final outcome.
These challenges become more pronounced with longer and more
complex target queries.

An alternative approach to using a video database management
systemwould be to use a vision languagemodel (VLM) [1, 20, 21, 27].
While VLMs are able to determine if a video fragment matches a
natural language description, they struggle to answer compositional
queries [14, 34]. Our goal in this paper is thus to leverage VDBMSs,
but simplify the task of finding initial examples.

Besides providing labeled examples of the target event, there are
alternative forms of user input that we can exploit to help the sys-
tem synthesize queries more effectively. The growing capabilities
of large language models (LLMs) for translating natural language
(NL) descriptions into declarative queries present a potential solu-
tion to reducing user-labeling effort, as users can simply describe
their target event in NL [18, 19, 29, 31]. However, NL is highly
ambiguous, which can lead to inaccurate translations [6, 13, 25].
For example, a user analyzing security footage may provide the NL
description “suspicious activity at entrance”. This phrase is inher-
ently ambiguous; it is unclear whether it refers to suspicious human
or vehicle activity, and moreover, what constitutes as suspicious
activity—loitering, breaking and entering, or something else. These
ambiguities can make it challenging for LLMs to precisely map NL
to the user’s intended query. As we show in Section 4.3, directly
executing the translated queries to find matching events results
in poor query performance. Therefore, we aim to incorporate NL
descriptions into the query synthesis process, but must address the
challenge posed by NL ambiguity.

Another approach to guiding the initial steps of synthesis is
to leverage domain knowledge about the iterative nature of ex-
ploratory video queries [8, 22, 36]. Users often start with simple
queries to explore their data and then iteratively refine their queries
to extract increasingly relevant results from the dataset. Consider

https://doi.org/10.1145/3736733.3736738
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3736733.3736738

HILDA’ 25, June 22–27, 2025, Berlin, Germany Manasi Ganti, Enhao Zhang, and Magdalena Balazinska

POLY-VOCAL

Labeled Examples

EQUI-VOCAL

Learned Queries
Duration((Person o! ,
Door o" , Near o!, o")	, 900)

Unseen
Videos

Matching Video
Segments

Initial Queries
3Person o! , Door o" ,
Near o!, o" 4

Select Initial
Queries

Seed Queries
• 3Person o! , Door o" ,
Near o!, o" 4; Open(o!, o")
• Person o! , Door o" ,
Open(o!, o")
• Car o! , Near o!, o" ,
Door(o!)

Natural Language
“A person is loitering outside
the entrance of a building.”

Previous Queries
• Person o! , Door o" , Open(o!, o")
• Car o! , Near o!, o" , Door(o!)

Generate
Seed Queries
① Get User

Labels
②

③

❌

Labeled Examples

❌✅ ✅

Figure 1: POLY-VOCAL pipeline. EQUI-VOCAL (gray dashed path) requires the user to manually provide labeled examples
to synthesize a query from scratch. POLY-VOCAL (blue solid path) extends EQUI-VOCAL by incorporating natural language
description and previously synthesized queries to 1○ generate seed queries, 2○ efficiently collect labeled examples from users,
and 3○ produce initial queries for subsequent synthesis by EQUI-VOCAL. All synthesized queries are stored for future use.

our running example: a user analyzing security footage for suspi-
cious activity may start by looking for a person entering a building
and later refine their search to find instances where a person is
loitering outside the entrance of a building (but has not entered). In
this scenario, the first query can inform the generation of the sec-
ond. However, previous queries contain both relevant information
(e.g., “person”, “building”) and extraneous predicates (e.g., “enter-
ing”), which must be identified and removed in order to leverage
previous queries effectively.

In this paper, we introduce POLY-VOCAL, a system designed to
bootstrap complex video query synthesis by incorporating various
forms of user input to improve query performance and efficiency
of the synthesis process while minimizing user effort. Extending
the capabilities of EQUI-VOCAL, POLY-VOCAL learns user intent
by leveraging NL descriptions and previously synthesized queries
from users. POLY-VOCAL consists of three core components (Fig-
ure 1). First, POLY-VOCAL generates seed queries by utilizing LLMs
to translate NL descriptions into compatible query notations for
EQUI-VOCAL’s synthesis process and by retrieving previously syn-
thesized queries. Second, it utilizes seed queries to filter video sub-
sets that are more likely to contain the target event for user labeling.
Finally, instead of beginning the synthesis process with an empty
query, POLY-VOCAL creates initial queries, based on seed queries
derived from NL descriptions and previous queries, for subsequent
query synthesis. Directly using LLM-translated or previously syn-
thesized queries as starting points is problematic since they often
contain irrelevant predicates that degrade performance. Instead,
POLY-VOCAL enumerates subqueries from seed queries, ranking
their effectiveness against labeled examples to select initial queries.
By incorporating positive and negative examples, POLY-VOCAL
clarifies the user intent expressed in NL.

POLY-VOCAL improves query performance and efficiency by
starting query synthesis from initial queries, and reduces user effort
by filtering a smaller set of candidate videos for user labeling. We
evaluate the query performance, user effort, and synthesis efficiency
of our approach on the CLEVRER dataset [37] with a curated set
of 50 queries and show significant improvements on all fronts.
Compared with vanilla EQUI-VOCAL, we raise the F1 score of the
system by 22%, decrease the user effort by 60%, and accelerate query
synthesis by 12%.

Table 1: Relational schema representation of data model.

Objects(vid, fid, oid, oname, 𝑥1, 𝑦1, 𝑥2, 𝑦2)
Relationships(vid, fid, rid, oid1, rname, oid2)
Attributes(vid, fid, oid, aname)

2 Background
POLY-VOCAL uses the data model and query synthesis pipeline
of EQUI-VOCAL [40], which is based on spatio-temporal scene
graphs [16]. In EQUI-VOCAL, a video is conceptually represented
as three relations: Objects, Relationships, and Attributes.
Queries over videos can thus be expressed as relational queries
over the view consisting of these three relations (as shown
in Table 1). However, queries in EQUI-VOCAL are not arbitrary
SQL queries. Since these queries focus on how objects interact
in space and time, EQUI-VOCAL restricts the set of relational
queries that it supports to ensure efficient query synthesis. These
queries are captured by a concise domain-specific language (DSL).
For example, a query searching for instances where “a person is
outside a building for at least 30 seconds, then the person enters
the building” can be expressed as (assuming 30 frames per second):
Duration((Person(𝑜1), Door(𝑜2), Near(𝑜1, 𝑜2)), 900); Open(𝑜1, 𝑜2)
The variable 𝑜𝑖 in a query is bound to an arbitrary object from the
video, with distinct subscripts indicating objects with different
identifiers. Within the same frame, predicates are separated by
commas, forming a region graph. Region graphs are connected
in temporal sequence with semicolons. The duration constraint
Duration(𝑔,𝑑) specifies the minimum number of frames 𝑑 for
which a region graph 𝑔 persists.

To synthesize queries with EQUI-VOCAL, the user provides (i) a
video dataset, (ii) user-defined functions (UDFs) that extract seman-
tic information from videos to populate the relations in Table 1, and
(iii) labeled examples—positive examples where the target event
occurs and negative examples where it does not—as shown by the
dashed path in Figure 1. EQUI-VOCAL begins with an empty query
and progressively expands it by adding new predicates, leveraging
user-provided examples to steer its search toward the target query.

3 POLY-VOCAL Approach
POLY-VOCAL reduces the difficulty of providing initial labeled ex-
amples by leveraging two alternative methods for capturing user

Bootstrapping Compositional VideoQuery Synthesis with Natural Language and PreviousQueries from Users HILDA’ 25, June 22–27, 2025, Berlin, Germany

Algorithm 1: Query initialization and synthesis in POLY-
VOCAL
Input :𝑈 - set of unlabeled video segments,

𝑃 - set of user-defined functions,
𝑇 - user’s natural language description of target event,
𝑄𝑃 - previously generated queries,
𝑘𝑖 - number of initial queries, hyperparameter

Output :𝑄𝑡 - set of top synthesized queries
1 𝑄𝑠 ← 𝑄𝑝

2 if T then
3 𝑄𝑠 ← 𝑄𝑠 ∪ LLMTranslate(𝑇, 𝑃)
4 𝐿 ← GetUserLabels(𝑈 ,𝑄𝑠)
5 𝑄0 ← SelectInitialQueries(𝐿,𝑄𝑠 , 𝑘𝑖)
6 𝑄𝑡 ← QuerySynthesis(𝑈 , 𝐿, 𝑃,𝑄0) // Invoke EQUI-VOCAL

7 return𝑄𝑡

intent: NL descriptions and previously synthesized queries. Algo-
rithm 1 outlines this approach. The algorithm takes as input a set
of unlabeled video segments (𝑈), a set of user-defined functions
for EQUI-VOCAL language specification (𝑃), an NL description (𝑇),
and a set of previous queries (𝑄𝑝).

The algorithm consists of three main steps, as depicted by the
blue solid path from the user in Figure 1. In Step 1○, the user
first specifies an NL description (𝑇) of the target event that POLY-
VOCAL, using an LLM, will translate into a query in the EQUI-
VOCAL DSL. To supplement this, POLY-VOCAL will also fetch
previously synthesized queries (𝑄𝑝). We refer to these queries de-
rived from different sources of user intent as seed queries (𝑄𝑠)
(Lines 1 to 3; see Section 3.1). POLY-VOCAL requires a non-empty
set of seed queries to initialize synthesis. Lacking these, it falls back
to the EQUI-VOCAL approach.

In Step 2○, POLY-VOCAL executes a single seed query on the
video database and shows the query results to the user. Unlike a
naïve approach, where users manually search the entire dataset
for examples of their target event, POLY-VOCAL shrinks the user’s
labeling effort by enabling users to efficiently locate initial positive
and negative video fragments (𝐿) within this smaller, pre-filtered
set of query results (Line 4; see Section 3.2).

Since seed queries may not always align with the target event,
directly employing them as initial inputs for synthesis can lead to
low performance. In Step 3○, POLY-VOCAL addresses this issue
by leveraging the user labels to refine and prune the seed queries,
producing a set of 𝑘𝑖 initial queries (𝑄0) of higher quality for EQUI-
VOCAL’s query synthesis process (Line 5; see Section 3.3).

POLY-VOCAL bootstraps the query synthesis process by effi-
ciently obtaining labeled examples (𝐿) and generating initial queries
(𝑄0). EQUI-VOCAL then takes these inputs, along with 𝑈 and 𝑃 , to
synthesize a query for the target event (Line 6). The synthesized
query is executed to find matching events in unseen videos. All
user-accepted synthesized queries are stored for future use.

3.1 Generating Seed Queries
POLY-VOCAL begins by asking the user for an NL description of
their target event. POLY-VOCAL utilizes an LLM to translate the
user’s description into a query written in the DSL (Algorithm 1,
Line 3). Although the LLM does not directly access the video data,
the LLM is providedwith the DSL syntax definition and a list of valid

predicates with semantic descriptions to guide this translation. This
helps the LLM generate meaningful queries with valid predicates.
The quality of the queries will likely vary depending on the LLM.
A detailed example of this prompt can be found in [41]. LLM-
translated queries can have syntax errors. To address this, POLY-
VOCAL verifies the syntactic correctness of a generated query. If
the generated query contains parsing errors, which can include
misplaced parentheses or invalid predicates, POLY-VOCAL retries
the generation process, incorporating feedback about the syntax
error into the prompt for the next attempt until a syntactically
correct query is produced. If the query is still incorrect after three
tries, the user is asked to re-articulate their target event. In our
experiments, we found that no seed query required more than two
iterations of syntax correction. As improving the initial translation
is not the focus of this paper, we assume that we start with a
syntactically correct seed query resulting from this process.

The generated query is then combined with all past queries that
the user has issued to create the set of seed queries.

3.2 Getting User Labels
While labeling examples of the target event is generally simpler

than composing a declarative query, filtering through a large input
dataset is often challenging, particularly when the target event is
complex or rare. To address this, we utilize seed queries to extract
a smaller, more promising subset of videos more likely to contain
instances of the target event (Algorithm 1, Line 4). This subset is
then presented to the user for labeling.

When multiple seed queries are present, only one is executed
against the dataset to retrieve a relevant subset of videos for labeling.
We employ the following heuristics: The LLM-generated query is
used if available; otherwise, the most recent previous query is used.
The LLM-generated query is prioritized because it is more likely to
better align with the user’s intended target event. When only previ-
ous queries are available, determining the most relevant one is dif-
ficult without additional user input, so we assume recency implies
relevance. An alternative solution is to explicitly prompt the user
to select from a list of previous queries. POLY-VOCAL assumes that
seed queries, even when partially inaccurate, can filter the dataset
to yield a pool with a higher proportion of positive samples than
the overall corpus. For instance, if the user is searching for videos
where a person loiters outside a building with the DSL representa-
tion “Duration((Person(𝑜1), Door(𝑜2), Near(𝑜1, 𝑜2)), 900)”, a seed
query such as “(Person(𝑜1), Door(𝑜2), Near(𝑜1, 𝑜2)); Open(𝑜1, 𝑜2)”
is not perfect. However, it could still capture video segments where
a person is initially outside a building. The resulting filtered video
set likely contains a higher proportion of positives than the original
corpus due to the correct predicates “Person(𝑜1)”, “Door(𝑜2)”, and
“Near(𝑜1, 𝑜2)”, enabling more efficient example collection.

Although a seed query is guaranteed to be syntactically correct,
it may not always be semantically accurate. Semantic inaccuracies
can prevent users from finding sufficient positive examples if rele-
vant instances are filtered out by unrelated predicates within the
seed query. If the number of positive examples remains insufficient
after labeling all filtered videos, POLY-VOCAL prunes predicates
from the seed query until enough positive examples are acquired.
To determine which predicate to remove, POLY-VOCAL generates
𝑛 query candidates, each omitting a different predicate from the

HILDA’ 25, June 22–27, 2025, Berlin, Germany Manasi Ganti, Enhao Zhang, and Magdalena Balazinska

query, and selects the candidate that maximizes the filtered pool
size. In our example, this would ideally lead to selecting the sub-
query “(Person(𝑜1), Door(𝑜2), Near(𝑜1, 𝑜2))”, removing the most
restrictive predicate “Open(𝑜1, 𝑜2)”.

While these assumptions may not hold universally, we empiri-
cally validate the effectiveness of our approach in Section 4. Future
work could explore adaptive mechanisms to determine the optimal
order of predicate removal.

3.3 Selecting Initial Queries
Ideally, seed queries closely match target events and can effec-

tively serve as initial queries for query synthesis or directly retrieve
matching videos. However, seed queries—either LLM-generated or
previously synthesized—often contain extraneous predicates. For
example, if the user intends to capture events where a person is
loitering near a building entrance, an accurate DSL representation
might be “Duration((Person(𝑜1), Door(𝑜2), Near(𝑜1, 𝑜2)), 900)”.
However, the user may provide the NL description “suspicious
activity at entrance” and the LLM might incorrectly translate this
into “(Person(𝑜1), Door(𝑜2), Open(𝑜1, 𝑜2))”, retrieving footage of a
person entering a building rather than loitering. Since the translated
DSL query contains an erroneous predicate “Open(𝑜1, 𝑜2)”, using it
as a starting point for query synthesis can introduce compounding
errors, resulting in progressively less accurate queries.

To synthesize target queries from initial queries effectively, the
process must balance the retention of useful information with the
removal of erroneous or extraneous predicates. One possible ap-
proach is to remove extraneous predicates during synthesis. How-
ever, since the EQUI-VOCAL synthesis process builds the query
by modifying one predicate at a time, allowing predicate removal
can lead to oscillations, where predicates are repeatedly added and
removed across iterations. To prevent this, POLY-VOCAL incorpo-
rates predicate removal prior to query synthesis. Its goal is to craft
an initial query that is a subquery of the target query—without
extraneous predicates and with minimal missing predicates. More
specifically, if the initial query is simpler or more generic than the
actual target event, it can still guide query synthesis in the right
direction, albeit at the cost of increased synthesis time. Conversely,
if the initial query is entirely incorrect or overly complex, it can
negatively impact query synthesis due to the presence of extrane-
ous predicates. Therefore, correct queries are preferred over generic
ones, while generic queries are preferred over incorrect ones.

To produce high-quality initial queries, POLY-VOCAL augments
seed queries by also considering their subqueries, which contain the
exhaustive combinations of the predicates within the query. For in-
stance, the seed query “(Person(𝑜1), Door(𝑜2), Open(𝑜1, 𝑜2))” will
have enumerated subqueries including “Person(𝑜1)”, “Door(𝑜1)”,
“(Person(𝑜1), Door(𝑜2))”, etc. Following this step, our set of candi-
date seed queries is composed of (i) different previous queries and
their subqueries as well as (ii) the NL translation and its subqueries.
We utilize previously gathered user labels (Algorithm 1, Line 4) to
evaluate the effectiveness of each candidate seed query (Line 5) and
determine initial queries. We rank candidate seed queries based on
F1 scores on those user labels and select the top-𝑘𝑖 queries, breaking
ties randomly, where 𝑘𝑖 is a hyperparameter.

After selecting initial queries, we start the EQUI-VOCAL synthe-
sis process. Instead of expanding the single, empty query in the first

iteration, EQUI-VOCAL now enumerates candidate queries by ex-
panding all 𝑘𝑖 initial queries, with subsequent steps—which retain
and similarly expand the most promising candidates—remaining un-
changed. A common failure in the original EQUI-VOCAL approach
occurs in early iterations when ancestor queries of the target query
are indistinguishable from other candidate queries with similarly
low performance [40]. By starting from non-empty initial queries,
POLY-VOCAL effectively prunes the search space and alleviates the
issue by jumping directly to more specific ancestor queries.

4 Evaluation
Dataset: We evaluate our system on the CLEVRER dataset [37],

comprising 10,000 five-second videos of moving 3D shapes. Follow-
ing EQUI-VOCAL [40], we use 13 predicates covering spatial rela-
tionships, locations, colors, shapes, and materials. We curate a test
set of 50 DSL queries with varying complexity, each executed to gen-
erate ground truth labels. An example query written for the dataset
is “(Sphere(𝑜1), Sphere(𝑜2), LeftOf(𝑜1, 𝑜2)); RightOf(𝑜1, 𝑜2)”.
NL descriptions: To evaluate the robustness of POLY-VOCAL to
linguistic variability, we create three different descriptions for each
DSL query: Accurate description closely aligns with the target event,
e.g., “A sphere is to the left of another sphere, then it moves to its
right”; Generic description is simpler yet generally oriented toward
the target event, e.g., “A sphere changes position relative to another
sphere”; Incorrect description contains incorrect or misleading de-
tails, e.g., “A sphere is to the left of another sphere, then it moves to
the right quadrant”. For the end-to-end experiment, one variation
is randomly chosen as the NL description for each target query.
Previous queries: We simulate an exploratory query workload by
generating a “previous query” for each target query, assuming that
the user has previously executed this query prior to issuing the
target query. Each previous query is created by randomly removing
one or more predicates from the corresponding target query and
introducing an additional predicate that is not present in the target
query. For example, a previous query for the example above could
be “Sphere(𝑜1), Red(𝑜1), LeftOf(𝑜1, 𝑜2)”.
Metrics: To measure query performance, we compute the F1 score
between retrieved results and ground truth data. To measure user
effort, we record the number of samples required to obtain sufficient
positive examples. To measure efficiency, we record the system
runtime of the entire pipeline to synthesize a query.
Baselines: We compare our system against the original EQUI-
VOCAL system, which utilizes only user labels and does not use NL
input or previous queries. For our approach, we consider three set-
tings: POLY-VOCAL-NL uses only NL descriptions, POLY-VOCAL-
prev uses only previous queries, and POLY-VOCAL-both uses both.
Experimental setup. Our experiments use the GPT-4o model
(gpt-4o-2024-08-06) as the LLM. POLY-VOCAL requests user la-
bels to collect at least 10 positive examples for each query. We
use 500 videos from CLEVRER as training data for running POLY-
VOCAL and EQUI-VOCAL and the rest as test data to evaluate
the performance of synthesized queries. We set 𝑘𝑖 = 5 for initial
query selection. For query synthesis, we set the following EQUI-
VOCAL hyperparameters: beam width 𝑏𝑤 = 5, maximum number
of predicates 𝑛pred = 10.

Bootstrapping Compositional VideoQuery Synthesis with Natural Language and PreviousQueries from Users HILDA’ 25, June 22–27, 2025, Berlin, Germany

EQUI-VOCAL POLY-VOCAL-NL POLY-VOCAL-prev POLY-VOCAL-both

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(a) F1 Score

0

50

100

150

200

Vi

de
o

Sa
m

pl
es

(b) User Effort

0

500

1000

1500

Sy
st

em
 ru

nt
im

e

(c) Runtime

Figure 2: End-to-end performance of EQUI-VOCAL vs. POLY-VOCAL under three input settings.

4.1 End-to-End Performance
4.1.1 Query Performance. Figure 2a shows the F1 scores for
the final synthesized queries on different systems. EQUI-VOCAL
achieves a mean F1 score of 0.56. By generating initial queries for
synthesis, POLY-VOCAL mitigates synthesis errors during early
iterations and significantly improves query performance by up
to 22% to 0.78 (with POLY-VOCAL-NL). In the absence of NL de-
scription, using prior synthesized queries offers modest gains, with
POLY-VOCAL-prev improving the F1 score to 0.62. Interestingly,
the F1 score of POLY-VOCAL-both drops slightly from 0.78 to 0.77
compared to POLY-VOCAL-NL. While POLY-VOCAL-both outper-
forms POLY-VOCAL-NL on simpler queries, i.e., queries with fewer
than 5 predicates, as query complexity increases, POLY-VOCAL-NL
performs better, leading to the decrease in average F1 score. This
suggests that NL descriptions in our evaluation are typically more
accurate than previous queries for complex queries, whereas prior
queries are more helpful with simpler target events where their
overlap with the target query is high.

4.1.2 User Effort. Figure 2b compares the user effort required to
obtain 10 positive examples for initiating query synthesis across
EQUI-VOCAL and POLY-VOCAL variants. We omit POLY-VOCAL-
both from this comparison, since only the NL description is used to
get user labels under this setting, making it functionally equivalent
to POLY-VOCAL-NL. In EQUI-VOCAL, the user has to examine an
average of 114 videos to find sufficient positive examples. POLY-
VOCAL reduces this burden by 60%, requiring users to view only
45 video segments when using NL descriptions for filtering. When
NL description is unavailable and a previously synthesized query is
used as a seed query, the user effort is 46% lower than EQUI-VOCAL
at 61 examples. This demonstrates that utilizing seed queries to filter
the input dataset effectively addresses the bottleneck of manually
searching for target event instances, thus reducing user effort.
4.1.3 Runtime. Figure 2c presents the system runtime for each
variation of POLY-VOCAL. While EQUI-VOCAL has an average
runtime of 1011 seconds, POLY-VOCAL-NL, POLY-VOCAL-prev,
and POLY-VOCAL-both reduce the runtime average by 18, 15, and
12% to 836, 865, and 886 seconds respectively. POLY-VOCAL demon-
strates improved runtime. By leveraging initial queries to accelerate
the query synthesis process, it reduces the number of synthesis
iterations required for each system to build the final query.

4.2 Natural Language Input
We evaluate the robustness of POLY-VOCAL on NL descriptions of

EQUI-VOCAL
POLY-VOCAL-NLAccurate

POLY-VOCAL-NLGeneric
POLY-VOCAL-NLIncorrect

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(a) F1 Score

0

50

100

150

200

Vi

de
o

Sa
m

pl
es

(b) User Effort

Figure 3: User effort and query performance of EQUI-VOCAL
and POLY-VOCALwith three types of natural language input.

varying quality. For each target query, we provide accurate, generic,
and incorrect descriptions, respectively, as input to POLY-VOCAL-
NL. Figure 3a shows the F1 scores of POLY-VOCAL-NL with dif-
ferent qualities of NL descriptions and EQUI-VOCAL. We find that
leveraging NL particularly helps improve the F1 score of the final
query when the user’s NL description is well-aligned, resulting in
an average F1 score of 0.86 compared to EQUI-VOCAL’s 0.56. When
the user provides a more generic version of the query they seek,
the NL description continues to serve as a good foundation to build
on and improves performance to an F1 score of 0.80. Even with
incorrect descriptions, POLY-VOCAL-NL slightly improves the F1
score to 0.60, as the initial query selection process ranks subqueries
of seed queries and thus effectively removes incorrect predicates.
Figure 3b shows the number of samples required to gather 10 posi-
tive examples. POLY-VOCAL significantly reduces user effort across
all variations of NL descriptions. With accurate descriptions, all
filtered videos are positive samples and thus POLY-VOCAL requests
as few as 13 labels on average, an 89% reduction from the baseline
of 114 examples. When the user’s description is more generic, the
user must look through an average of 60 videos—there are more
potential positive examples for the user to sift through, but still
fewer compared to no filtering. Notably, with incorrect descriptions,
POLY-VOCAL reduces labeling effort to an average of 44 videos,
outperforming generic descriptions. The reasons are twofold. First,
generic queries can potentially introduce many false positives into
the filtered set, thereby increasing the labeling burden. Second,
incorrect descriptions typically lead to false negatives and signifi-
cantly shrink the filtered pool, in which case the user fails to find
enough positives even after labeling all filtered videos. Specifically,

HILDA’ 25, June 22–27, 2025, Berlin, Germany Manasi Ganti, Enhao Zhang, and Magdalena Balazinska

0.0

0.5

1.0

F1
 S

co
re

LLM Translation
POLY-VOCAL

(a) POLY-VOCAL vs. di-
rect LLM translation.

NL Prev Both
0

1

F1
 S

co
re

without subqueries
with subqueries

(b) POLY-VOCALwithout vs. with subquery
enumeration.

Figure 4: Comparison of initial query selection strategies.

11 out of 50 seed queries derived from incorrect descriptions are
modified while getting user labels, and predicates are removed
as described in Section 3.2. Nonetheless, these findings indicate
that even imperfect NL input contains valuable information that
POLY-VOCAL can effectively exploit to reduce user labeling effort.

4.3 Selecting Initial Queries
Given that LLMs can directly translate NL descriptions into DSL

queries, one might question whether the translated query alone
could serve as the final query without undergoing further query
synthesis. To answer this question, we compare POLY-VOCAL with
this direct LLM method. As illustrated in Figure 4a, POLY-VOCAL
achieves an F1 score of 0.77—over 80% higher than the direct LLM
method’s 0.41—by incorporating the DSL query into the synthe-
sis process. This indicates that relying solely on LLM-generated
queries is insufficient, as NL descriptions provided by users may not
accurately represent the target event. By integrating the translated
DSL query with EQUI-VOCAL’s query synthesis, POLY-VOCAL
clarifies the user’s intent and achieves significantly better results.

To validate the effectiveness of our query enumeration strategy
in initial query selection, we evaluate the performance of three
POLY-VOCAL variants, comparing results with and without query
enumeration. As illustrated in Figure 4b, enumerating subqueries
consistently improves F1 scores by effectively eliminating extrane-
ous predicates from seed queries. The improvement is most pro-
nounced for POLY-VOCAL-prev, where F1 scores increase by 20%
(from 0.51 to 0.62). Previous queries benefit more from query enu-
meration because they typically exhibit higher degrees of misalign-
ment with target queries.

5 Related Work
Compositional Video Query Processing. There are many sys-
tems for video analytics specifically designed for compositional
queries [2, 3, 7, 23]. However, these systems require users to spec-
ify their queries or train a classifier for the purpose of identifying
their target event, both of which are non-trivial for non-experts
and can be time consuming. POLY-VOCAL utilizes more intuitive
user input—the query-by-example approach inherited from EQUI-
VOCAL, the user’s own textual description of their query, and any
queries previously synthesized by the user. These require minimal
effort and expertise.

Text-to-Declarative-Query Translation. LLMs have been ap-
plied to Text-to-SQL and other Text-to-Declarative-Query transla-
tion tasks [19, 31] with impressive results on academic benchmarks
[30, 38]. However, these benchmarks fail to capture the ambiguity

of real NL input, which can degrade the quality of LLM-generated
queries [12, 25]. Additionally, the need for extensive context—such
as schema definitions and DSL constraints—can further challenge
LLM performance [6, 18]. POLY-VOCAL mitigates these limitations
by leveraging user-labeled examples to disambiguate the user intent
expressed in NL.

Query Reuse. Reusing results in traditional DBMSs is a well-
researched topic [5, 8, 9, 15, 24, 26], primarily focusing on opti-
mizing query execution through exact syntactic matching [36].
However, such techniques are not well-suited for flexible reuse in
exploratory or evolving query synthesis. POLY-VOCAL extends
query reuse beyond syntactic equivalence, extracting valuable se-
mantic information despite potential syntactic mismatches.

6 Limitations and Challenges
While POLY-VOCAL greatly reduces query synthesis time and user
labeling effort, further improvements are needed to make it a more
interactive and practical query-by-example framework. Currently,
synthesizing one query with POLY-VOCAL-both requires 14.7 min-
utes, excluding user labeling time. While runtime can be reduced
through hyperparameter tuning (e.g., smaller beam width, fewer
examples), this creates performance trade-offs.

In our experiment, we request 10 positive examples to initiate
query synthesis, requiring users to examine an average of 45 videos
when using POLY-VOCAL with NL descriptions. While simpler
queries may achieve good performance with as few as two initial
positive examples [40], insufficient labeled examples can compro-
mise the reliability of F1 scores used to evaluate candidate query
quality. Moreover, labeling effort depends heavily on the quality
of seed queries. For example, accurate NL descriptions can greatly
reduce labeling requirements (Figure 3b), which highlights the need
for better user guidance in formulating initial queries.

Future work could explore enhanced user interactivity through-
out the POLY-VOCAL pipeline. To speed up synthesis, one promis-
ing direction is to enable users to inspect intermediate queries after
each iteration [39] and terminate the process early once they are
satisfied with the results. Furthermore, to improve the alignment of
seed queries, we can present users with multiple previous queries
and explicitly ask them to pick the most relevant ones.

7 Conclusion
In this paper, we introduced POLY-VOCAL, a novel approach to
improving the query synthesis process by leveraging both NL de-
scriptions and previously synthesized queries as seed queries. We
ensure that even when user input is inaccurate, valuable structural
and semantic information can still be extracted and refined to guide
synthesis toward an accurate final query. Overall, POLY-VOCAL
makes query generation more user-friendly, efficient, and robust.

Acknowledgments
This work was funded in part by NSF award 2211133.

References
[1] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Jun-

yang Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-VL: A Versatile Vision-
Language Model for Understanding, Localization, Text Reading, and Beyond.
arXiv:2308.12966 [cs.CV]

https://arxiv.org/abs/2308.12966

Bootstrapping Compositional VideoQuery Synthesis with Natural Language and PreviousQueries from Users HILDA’ 25, June 22–27, 2025, Berlin, Germany

[2] Favyen Bastani, Oscar R. Moll, and Samuel Madden. 2020. Vaas: Video Analytics
At Scale. PVLDB 13, 12 (2020), 2877–2880.

[3] Daren Chao, Nick Koudas, and Ioannis Xarchakos. 2020. SVQ++: Querying for
Object Interactions in Video Streams. In SIGMOD. 2769–2772.

[4] Yueting Chen, Nick Koudas, Xiaohui Yu, and Ziqiang Yu. 2022. Spatial and
Temporal Constrained Ranked Retrieval over Videos. PVLDB 15, 11 (2022), 3226–
3239.

[5] Kayhan Dursun, Carsten Binnig, Ugur Cetintemel, and TIm Kraska. 2017. Revis-
iting Reuse in Main Memory Database Systems. In SIGMOD. 1275–1289.

[6] Avrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen Deep, Gunther Hagleither,
Wangda Tan, Joyce Cahoon, Rana Alotaibi, Jordan Henkel, Abhik Singla, Alex Van
Grootel, Brandon Chow, Kai Deng, Katherine Lin, Marcos Campos, K. Venkatesh
Emani, Vivek Pandit, Victor Shnayder, Wenjing Wang, and Carlo Curino. 2024.
NL2SQL is a solved problem... Not!. In CIDR.

[7] Daniel Y. Fu,Will Crichton, JamesHong, Xinwei Yao, Haotian Zhang, Anh Truong,
Avanika Narayan, Maneesh Agrawala, Christopher Ré, and Kayvon Fatahalian.
2019. Rekall: Specifying Video Events using Compositions of Spatiotemporal
Labels. arXiv:1910.02993 [cs.DB]

[8] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. 2017. Revisiting Reuse for Approximate Query Processing. PVLDB 10
(2017), 1142–1153.

[9] Jonathan Goldstein and Per-Åke Larson. 2001. Optimizing Queries Using Materi-
alized Views: A practical, scalable solution. In SIGMOD. 331–342.

[10] Jie Gong and Carlos H. Caldas. 2010. Computer Vision-Based Video Interpretation
Model for Automated Productivity Analysis of Construction Operations. J.
Comput. Civ. Eng. 24, 3 (2010), 252–263.

[11] Patrick Hammer, Tony Lofthouse, Enzo Fenoglio, Hugo Latapie, and Pei Wang.
2020. A Reasoning BasedModel for Anomaly Detection in the Smart City Domain.
In IntelliSys (AISC, Vol. 1251). 144–159.

[12] Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. Text-to-SQL in
the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data.
arXiv:2106.05006 [cs.CL]

[13] Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran
Huang, and Xiao Huang. 2024. Next-Generation Database Interfaces: A Survey
of LLM-based Text-to-SQL. arXiv:2406.08426 [cs.CL]

[14] Cheng-Yu Hsieh, Jieyu Zhang, Zixian Ma, Aniruddha Kembhavi, and Ranjay
Krishna. 2023. SugarCrepe: Fixing Hackable Benchmarks for Vision-Language
Compositionality. In NeurIPS.

[15] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2009. An
architecture for recycling intermediates in a column-store. In SIGMOD. 309–320.

[16] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. 2020. Action
Genome: Actions As Compositions of Spatio-Temporal Scene Graphs. In CVPR.
10233–10244.

[17] Ranjay Krishna, Vincent S. Chen, Paroma Varma, Michael S. Bernstein, Christo-
pher Ré, and Li Fei-Fei. 2019. Scene Graph Prediction With Limited Labels. In
ICCV. 2580–2590.

[18] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang,
Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li,
Kevin Chen-Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2023.
Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale
Database Grounded Text-to-SQLs. In NeurIPS.

[19] Yilin Li and Deddy Jobson. 2024. LLMs as an Interactive Database Interface for
Designing Large Queries. In HILDA. 1–7.

[20] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. 2023. Visual Instruc-
tion Tuning. In NeurIPS.

[21] Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun,
Tongzheng Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei
Xu, Zhenda Xie, and Chong Ruan. 2024. DeepSeek-VL: Towards Real-World
Vision-Language Understanding. arXiv:2403.05525 [cs.AI]

[22] Gary Marchionini. 2006. Exploratory search: from finding to understanding.
Commun. ACM 49, 4 (2006), 41–46.

[23] Stephen Mell, Favyen Bastani, Steve Zdancewic, and Osbert Bastani. 2023. Syn-
thesizing Trajectory Queries from Examples. In CAV, Vol. 13964. 459–484.

[24] Fabian Nagel, Peter A. Boncz, and Stratis Viglas. 2013. Recycling in pipelined
query evaluation. In ICDE. 338–349.

[25] Simone Papicchio, Paolo Papotti, and Luca Cagliero. 2024. Evaluating Ambiguous
Questions in Semantic Parsing. In ICDEW. 338–342.

[26] Luis Leopoldo Perez and Christopher M. Jermaine. 2014. History-aware query
optimization with materialized intermediate views. In ICDE. 520–531.

[27] Francisco Romero, Caleb Winston, Johann Hauswald, Matei Zaharia, and Chris-
tos Kozyrakis. 2023. Zelda: Video Analytics using Vision-Language Models.
arXiv:2305.03785 [cs.DB]

[28] Dorsa Sadigh, Shankar Sastry, Sanjit A. Seshia, and Anca D. Dragan. 2016. Plan-
ning for Autonomous Cars that Leverage Effects on Human Actions. In Robotics:
Science and Systems.

[29] Dian Shao, Yu Xiong, Yue Zhao, Qingqiu Huang, Yu Qiao, and Dahua Lin. 2018.
Find and Focus: Retrieve and Localize Video Events with Natural Language

Queries. In ECCV, Vol. 11213. 202–218.
[30] Liang Shi, Zhengju Tang, Nan Zhang, Xiaotong Zhang, and Zhi Yang. 2024.

A Survey on Employing Large Language Models for Text-to-SQL Tasks.
arXiv:2407.15186 [cs.CL]

[31] Ruoxi Sun, Sercan Arik, Rajarishi Sinha, Hootan Nakhost, Hanjun Dai, Pengcheng
Yin, and Tomas Pfister. 2023. SQLPrompt: In-Context Text-to-SQL with Minimal
Labeled Data. In EMNLP (Findings). 542–550.

[32] David Tweed and Andrew Calway. 2002. Tracking Multiple Animals in Wildlife
Footage. In ICPR. 24.

[33] Dominique Verdejo and Eunika Mercier-Laurent. 2022. Video Intelligence as a
component of a Global Security system. arXiv:2201.04349 [cs.AI]

[34] Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, Sharon Li, and
Neel Joshi. 2024. Is A Picture Worth A Thousand Words? Delving Into Spatial
Reasoning for Vision Language Models. In NeurIPS.

[35] Renzhi Wu, Pramod Chunduri, Ali Payani, Xu Chu, Joy Arulraj, and Kexin Rong.
2024. SketchQL: Video Moment Querying with a Visual Query Interface. Proc.
ACM Manag. Data 2, 4 (2024), 204:1–204:27.

[36] Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore Ramachandran.
2022. EVA: A Symbolic Approach to Accelerating Exploratory Video Analytics
with Materialized Views. In SIGMOD. 602–616.

[37] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Tor-
ralba, and Joshua B. Tenenbaum. 2020. CLEVRER: Collision Events for Video
Representation and Reasoning. In ICLR.

[38] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R.
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In EMNLP. 3911–3921.

[39] Enhao Zhang, Maureen Daum, Dong He, Manasi Ganti, Brandon Haynes, Ranjay
Krishna, and Magdalena Balazinska. 2023. EQUI-VOCAL Demonstration: Synthe-
sizing Video Queries from User Interactions. PVLDB 16, 12 (2023), 3978–3981.

[40] Enhao Zhang, Maureen Daum, Dong He, Brandon Haynes, Ranjay Krishna, and
Magdalena Balazinska. 2023. EQUI-VOCAL: Synthesizing Queries for Compo-
sitional Video Events from Limited User Interactions. PVLDB 16, 11 (2023),
2714–2727.

[41] Enhao Zhang, Nicole Sullivan, Brandon Haynes, Ranjay Krishna, and Mag-
dalena Balazinska. 2025. Self-Enhancing Video Data Management System
for Compositional Events with Large Language Models [Technical Report].
arXiv:2408.02243 [cs.DB]

https://arxiv.org/abs/1910.02993
https://arxiv.org/abs/2106.05006
https://arxiv.org/abs/2406.08426
https://arxiv.org/abs/2403.05525
https://arxiv.org/abs/2305.03785
https://arxiv.org/abs/2407.15186
https://arxiv.org/abs/2201.04349
https://arxiv.org/abs/2408.02243

	Abstract
	1 Introduction
	2 Background
	3 POLY-VOCAL Approach
	3.1 Generating Seed Queries
	3.2 Getting User Labels
	3.3 Selecting Initial Queries

	4 Evaluation
	4.1 End-to-End Performance
	4.2 Natural Language Input
	4.3 Selecting Initial Queries

	5 Related Work
	6 Limitations and Challenges
	7 Conclusion
	Acknowledgments
	References

